Translate

miércoles, 27 de marzo de 2019

No te inscribiste en los cursos de Gugler? que esperas??




Si no te inscribiste, todavia estas a tiempo : https://inscripciones.gugler.com.ar


Fue lanzado Java 12 con Switch Expressions y Shenandoah GC


Java 12, la última versión de Java, se lanzó a tiempo, el 19 de marzo. Con la nueva versión viene una serie de nuevas y notables características y mejoras. Específicamente, Java 12 incluye una nueva función de lenguaje llamada Switch Expressions , un nuevo recolector de basura llamado Shenandoah (experimental) y mejoras al recolector de basura G1 predeterminado.

De acuerdo con el nuevo esquema de nombres y el ciclo de lanzamiento de Oracle, esta versión llega solo seis meses después de Java 11 y no se considera una versión de soporte a largo plazo (LTS), por lo que solo se admitirá durante seis meses.

Las expresiones de switch son una nueva función de lenguaje que se basa en y mejora la declaración de switch existente. Permiten una manera más concisa y menos detallada de expresar un condicional de múltiples vías. Se escriben usando un poco de sintaxis recientemente introducida:

int value = switch (number) {
    case ONE   -> 1;
    case TWO   -> 2;
    case THREE -> 3;
};

El uso de la flecha (->) en lugar de dos puntos (:) y la falta de declaraciones de ruptura. Las expresiones de cambio no tienen caída a través de la semántica. En su lugar, cada etiqueta debe producir un valor, y cada valor posible para la variable que se está probando debe corresponder a una rama en el conmutador.

Java 12 incluye un nuevo recolector de basura, Shenandoah, que se esfuerza por ser "un recolector de basura de baja latencia". Funciona al intentar ejecutarse de forma más concurrente con subprocesos de aplicaciones en un programa Java para realizar sus tareas de recolección de basura (evacuación, marcado, compactación, etc.). Al hacer esto, el trabajo restante, que no se ejecuta de forma simultánea, debería dar como resultado solo breves pausas.

Las aplicaciones que requieren capacidad de respuesta y pausas predecibles son buenas candidatas para usar Shenandoah. También vale la pena señalar que el objetivo del equipo de Red Hat que contribuyó con Shenandoah es que "los tiempos de pausa con Shenandoah son independientes del tamaño del montón, lo que significa que tendrá los mismos tiempos de pausa consistentes si su montón es de 200 MB o 200 GB", pero real el rendimiento dependerá del tamaño real del montón y la carga de trabajo.

Shenandoah está actualmente marcado como un proyecto experimental y debe habilitarse con la opción -XX: + UnlockExperimentalVMO. A Red Hat se le atribuye la implementación inicial y continuará admitiéndola tanto para la arquitectura aarch64 como para la arquitectura amd64.

Java 12 no solo vino con un nuevo recolector de basura, sino que también se hicieron mejoras al recolector de basura G1 existente. Las propuestas de mejora JEP 344 y JEP 346 se incluyeron en el lanzamiento.

El primero de los dos, JEP 344, mejora la forma en que el recolector de basura G1 cumple sus objetivos de tiempo para las pausas de recolección. El problema que resuelve es cuando el recolector de basura G1 selecciona erróneamente una cantidad de trabajo (a través de heurísticas de aplicación) que no se puede lograr dentro del tiempo de pausa definido. En estos casos, no se puede evitar exceder el objetivo de tiempo de pausa.

Para mejorar esto, el recolector de basura G1 ahora detecta si selecciona repetidamente una cantidad incorrecta de trabajo y ajusta. Para ello, divide el trabajo en colecciones obligatorias y opcionales y permite que G1 detenga su trabajo en cualquier momento mientras realiza el trabajo en la colección opcional.

La segunda mejora, JEP 346, mejora el uso de la memoria del recolector de basura G1 devolviendo la memoria del montón de Java no utilizada al sistema operativo (OS) durante los períodos de inactividad.

Java 12 no solo vino con un nuevo recolector de basura, sino que también se hizo mejoras en el recolector de basura G1 existente. Las propuestas de mejora JEP 344 y JEP 346 se incluyen en el lanzamiento.

El primero de los dos, JEP 344, mejora de la forma en que el recolector de basura G1 cumple con sus objetivos de tiempo para las pausas de recolección. El problema que resuelve es cuando el recolector de basura G1 selecciona erróneamente una cantidad de trabajo (a través de heurísticas de aplicación) que no se puede lograr dentro del tiempo de pausa definido. En estos casos, no se puede evitar el objetivo de tiempo de pausa.

Para mejorar esto, el recolector de basura G1 ahora detecta y selecciona repetidamente una cantidad correcta de trabajo y ajusta. Para ello, divide el trabajo en colecciones obligatorias y opcionales y permite que G1 detenga su trabajo en cualquier momento mientras realiza el trabajo en la colección opcional.

La segunda mejora, JEP 346, mejora el uso de la memoria del recolector de basura G1 devolviendo la memoria del montón de Java no se encuentra en los períodos de inactividad.

Antes de esta mejora, el recolector G1 rara vez devolvía la memoria del montón de Java al sistema operativo porque solo lo hace durante una recolección de basura completa. Para lograr esto, el recolector G1 ahora tiene un mejor uso de su tiempo de inactividad para devolver al sistema operativo la memoria.

domingo, 24 de marzo de 2019

Partitioners en Apache Cassandra



Un particionador determina cómo se distribuyen los datos entre los nodos del clúster. Cassandra almacena los datos en filas extensas o "particiones". Cada fila tiene una clave de partición que se usa para identificar la partición. Un particionador, entonces, es una función hash para calcular el token de una clave de partición. Cada fila de datos se distribuye dentro del anillo de acuerdo con el valor del token de clave de partición.

Cassandra proporciona varios particionadores diferentes en el paquete org.apache.cassandra.dht (DHT significa "tabla hash distribuida"). El Murmur3Partitioner se agregó en 1.2 y ha sido el particionador predeterminado desde entonces; es una implementación eficiente de Java en el algoritmo de MurmurHash desarrollado por Austin Appleby. Genera hashes de 64 bits. El valor predeterminado anterior fue el RandomPartitioner.

Debido al diseño generalmente conectable de Cassandra, también puede crear su propio particionador implementando la clase org.apache.cassandra.dht.IPartitioner y colocándolo en el classpath de Cassandra.

miércoles, 20 de marzo de 2019

Nuevos libros gratuitos de Java Code Geeks.

Download Dev Guides!

 
PHP is a server-side scripting language designed for web development but also used as a general-purpose programming language. Originally created by Rasmus Lerdorf in 1994, the PHP reference implementation is now produced by The PHP Group. PHP originally stood for Personal Home Page, but it now stands for the recursive backronym PHP: Hypertext Preprocessor. PHP code may be embedded into HTML code, or it can be used in combination with various web template systems, web content management systems and web frameworks. PHP code is usually processed by a PHP interpreter implemented as a module in the web server or as a Common Gateway Interface (CGI) executable. The web server combines the results of the interpreted and executed PHP code, which may be any type of data, including images, with the generated web page. 
 
 
Blogging has surged in popularity in recent years. Companies and individuals are using blogging in order to express their voices and connect with their audience. Most of this is performed on the popular WordPress platform. WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. Features include a plugin architecture and a template system. WordPress was used by more than 23.3% of the top 10 million websites as of January 2015. WordPress is the most popular blogging system in use on the Web, at more than 60 million websites. Web Code Geeks recommend using WordPress as your publishing platform. We have been using it with great success for several years now. This short guide will help you start your own blog with WordPress. It will get you up to speed to quickly launch your personal or company blog!
 
 
Docker is the world’s leading software containerization platform. Docker containers wrap a piece of software in a complete file system that contains everything needed to run: code, runtime, system tools, system libraries – anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment. Docker provides an additional layer of abstraction and automation of operating-system-level virtualization on Linux. Docker uses the resource isolation features of the Linux kernel such as cgroups and kernel namespaces, and a union-capable file system such as OverlayFS and others to allow independent “containers” to run within a single Linux instance, avoiding the overhead of starting and maintaining virtual machines.  In this ebook, we provide a compilation of Docker examples that will help you kick-start your own automation projects. We cover a wide range of topics, from installation and configuration, to DNS and commands. With our straightforward tutorials, you will be able to get your own projects up and running in minimum time.
 
 
Scala is a general-purpose programming language. It has full support for functional programming and a very strong static type system. Designed to be concise, many of Scala’s design decisions were inspired by criticism of Java’s shortcomings. Scala source code is intended to be compiled to Java bytecode, so that the resulting executable code runs on a Java virtual machine. Java libraries may be used directly in Scala code and vice versa (language interoperability). Like Java, Scala is object-oriented, and uses a curly-brace syntax reminiscent of the C programming language. Unlike Java, Scala has many features of functional programming languages like Scheme, Standard ML and Haskell, including currying, type inference, immutability, lazy evaluation, and pattern matching. It also has an advanced type system supporting algebraic data types, covariance and contravariance, higher-order types (but not higher-rank types), and anonymous types. Other features of Scala not present in Java include operator overloading, optional parameters, named parameters, raw strings, and no checked exceptions.
 

martes, 19 de marzo de 2019

Los VNodes de Cassandra


Las primeras versiones de Cassandra asignaron un solo token a cada nodo, de una manera bastante estática, que requiere que se calcule tokens para cada nodo. Aunque hay herramientas disponibles para calcular tokens en función de un número dado de nodos, todavía era un proceso manual para configurar la propiedad initial_token para cada nodo en un archivo cassandra.yaml. Esto también hizo que agregar o reemplazar un nodo fuera una operación costosa, ya que rebalancear el clúster requería mover una gran cantidad de datos.

La versión 1.2 de Cassandra introdujo el concepto de nodos virtuales, también llamados vnodos para abreviar. En lugar de asignar un solo token a un nodo, el rango del token se divide en múltiples rangos más pequeños. A cada nodo físico se le asignan múltiples tokens. De forma predeterminada, a cada nodo se le asignarán 256 de estos tokens, lo que significa que contiene 256 nodos virtuales. Los nodos virtuales han sido habilitados por defecto desde 2.0.

Los Vnodes facilitan el mantenimiento de un clúster que contiene máquinas heterogéneas. Para los nodos de un clúster que tienen más recursos informáticos disponibles, se puede aumentar el número de vnodos estableciendo, la propiedad num_tokens en el archivo cassandra.yaml. A la inversa, puede establecer num_tokens más bajo para disminuir el número de vnodes para máquinas menos capaces.

Cassandra maneja automáticamente el cálculo de los rangos de token para cada nodo en un clúster en proporción a su valor num_tokens. Las asignaciones de tokens para vnodes se calculan mediante la clase org.apache.cassandra.dht.tokenallocator.ReplicationAwareTokenAllocator.

Una ventaja adicional de los nodos virtuales es que aceleran algunas de las operaciones más pesadas de Cassandra, como el arranque de un nuevo nodo, la clausura de un nodo y la reparación de un nodo. Esto se debe a que la carga asociada con las operaciones en múltiples rangos más pequeños se distribuye de manera más uniforme entre los nodos del clúster. Onda como se ve en la imagen de arriba.

domingo, 17 de marzo de 2019

Rings and Tokens en Apache Cassandra


Veamos cómo Cassandra distribuye los datos a través de estos nodos.

Cassandra representa los datos gestionados por un grupo como un anillo. A cada nodo del anillo se le asigna uno o más rangos de datos descritos por un token, que determina su posición en el anillo. Un token es un ID de entero de 64 bits que se utiliza para identificar cada partición. Esto da un rango posible para tokens de –2 a la 63 a 2 a la 63 –1.

Un nodo pide un token entre este rango y mayor que el token del nodo anterior. El nodo con el token más bajo posee el rango menor o igual que su token y el rango mayor que el token más alto, que también se conoce como el "rango de ajuste". De esta manera, los tokens especifican un anillo completo. El anillo incluye los nodos en un solo centro de datos. Esta disposición particular está estructurada de tal manera que los rangos de token consecutivos se reparten entre nodos en diferentes racks.

Los datos se asignan a los nodos utilizando una función hash para calcular un token para la clave de partición. Este token de clave de partición se compara con los valores de token de los distintos nodos para identificar el rango y, por lo tanto, el nodo que posee los datos. Los intervalos de tokens están representados por la clase org.apache.cassandra.dht.Range.

sábado, 16 de marzo de 2019

Free ebook: The State of Machine Learning Adoption in the Enterprise

Me llego este mail y que más decir a aprovechar :

O'Reilly Media Logo
 
 
Hi Emanuel,
The State of Machine Learning Adoption in the Enterprise book cover
Who sets machine learning priorities in other organizations? What methodologies (such as Agile) do they use to develop ML? Do they build their ML models using internal teams, external consultants, or cloud APIs? How long have they deployed ML in production? How do they evaluate success with machine learning?
If you’re curious (we were), check out our free ebook, The State of Machine Learning Adoption in the Enterprise.
 
GET THE FREE EBOOK
 
Ben Lorica
Chief Data Scientist
P.S. This ebook shows you what the more sophisticated companies do when they adopt machine learning. Learn how they do it at the AI Conference in New York April 15–18.
 

viernes, 15 de marzo de 2019

Hace 25 años que se lanzó Linux 1.0 !!

Que los cumpla feliz!!

El 14 de marzo de 2019, se cumplen 25 años desde el lanzamiento de Linux 1.0. Fue la primera versión redonda del núcleo para sistemas operativos que mueve gran parte del entramado tecnológico actual, así como la consagración del que se ha convertido en el proyecto de software colaborativo más importante de la historia, uno cuyo impulso ha puesto al código abierto como tendencia imperante en la industria.

Que mejor forma de homenajearlo que con un video de los viejos:



Dejo link de la noticia: https://www.clarin.com/tecnologia/sistema-operativo-planto-batalla-windows-cumplio-25-anos_0_VIVaR9HdP.html

Inscripciones Abiertas 2019 a cursos Gugler!!

Me llego este mail de los cursos de Gugler. Puede anotarse, el curso de Java esta muy bueno:

  PRENSA GUGLER  LAB 20192019
  NOTICIAS ACTUALES
informacion  OFERTA ACADÉMICA

Estimado Goette Emanuel :
 Tenemos el agrado de informarte que hemos abierto oficialmente una instancia especial de inscripción para el primer cuatrimestre del año 2019,  solamente para los que son, o fueron alumnos de los cursos dictados por el Laboratorio de Investigación Gugler, con el objetivo de que puedas asegurarte tu lugar en el curso y comisión que desees!!.
Esta instancia de inscripción especial comienza hoy, hasta el Lunes 18 de Marzo, luego se abren las inscripciones al público en general, publicando las mismas en todos los medios oficiales. 
Las clases estarían iniciándose el miércoles 3, jueves 4, viernes 5 o sábado 6 de Abril,según el curso y modalidad que elegiste.
Inscribirteclic aquí
  
Horarios y comisionesclic aquí.
Saludos cordiales y te esperamos!!.
Dictamos nuestros cursos en la Facultad de Ciencia y Tecnología, perteneciente a la Universidad Autónoma de Entre Ríos. En nuestro portafolio de capacitación encontrarás:
MODALIDAD PRESENCIAL
  • Cursos de Programación:
    Programación en PHP.
    Programación en Java.
    Programación en Python. (Nuevo).
     
  • Cursos de Sistemas Operativos:
    Administración de GNU/Linux.
     
  • Cursos de Redes:
    Administración de Redes.
     
  • Cursos de Mantenimiento/Reparación:
    Reparación y Mantenimiento de PC.
 MODALIDAD DISTANCIA
  •  Administración de GNU/Linux.
  •  Programación en PHP.
  •  Programación en Java.
informacion   MÁS INFORMACIÓN informacion LABORATORIO DE INVESTIGACIÓN GUGLER
Si deseas comunicarte con nosotros, te recordamos que podes hacerlo a través de los siguientes portales, en los cuales encontrarás información sobre Gugler.
TEL: (0343) - 4975066 Interno 108
Sitio Oficial:  www.gugler.com.ar
Campus:  campusvirtual.gugler.com.ar
Sistema de Gestión Cursos:  sgc.gugler.com.ar
Sistema de Gestión Cursos Móvil: Aquí
Sistema de Documentación:  sgd.gugler.com.ar
Sistema de Validación:  giua.gugler.com.ar
                   Twitter                Facebook
Laboratorio Gugler
partir del 2012, la Facultad de Ciencia y Tecnología nos declaro:  "Laboratorio de Investigación".

El laboratorio ha ampliado las incumbencias de Gugler, ya que además de la capacitación, la promoción y difusión del software libre, ahora abarcará actividades como publicaciones y proyectos de investigación, así como también el dictado y participación en conferencias o exposiciones de ámbitos académicos y científicos.

Ante cualquier duda comunicarse con nosotros a contacto@gugler.com.ar
GUGLER PRESS

martes, 12 de marzo de 2019

Parámetros y argumentos: una manera fácil de recordar la diferencia en Kotlin

Si alguna vez has tenido problemas para recordar la diferencia entre parámetros y argumentos:

Es un parámetro cuando estás dentro de la definición.
Es un argumento cuando estás fuera de la definición.
La forma más fácil de recordar la diferencia entre los dos es asociar la palabra argumento con la palabra afuera.

Aquí hay una función simple que calcula el cuadrado de un entero. ¿Qué datos se pasarán? Solo el número que queremos al cuadrado.

fun square(number: Int): Int {
    return number * number
}

Aquí, dentro de la definición de esta función, decimos que el número es un parámetro.

Ahora que hemos definido nuestra función, vamos a usarla. Pasaremos algunos datos a nuestra función cuando la llamemos.

val radius = 5
val area = Math.PI * square(radius)

Aquí, fuera de la definición de la función, decimos que el radius es un argumento de la función square ().

Una clase genérica es aquella que tiene varibles o funciones que no tienen un tipo determinado. Por ejemplo, aquí hay una clase Box muy simple que simplemente envuelve algún otro objeto.

class Box<T>(var item: T)

Aquí, dentro de la definición de la clase, decimos que T es un parámetro de tipo.

Usar esta clase es bastante fácil: simplemente invocamos a su constructor y pasamos los datos que queremos ajustar.

val box = Box <String> ("Hola")

Aquí, fuera de la definición de la clase Box, lo construimos con un argumento de tipo String.

De hecho, Kotlin hace una inferencia de tipo fantástica, por lo que ni siquiera tenemos que especificarlo explícitamente:

caja de val = caja ("Hola")

En este caso, todavía hay un argumento de tipo, y sigue siendo String. Simplemente está implícito en el tipo de argumento "Hola" que le estamoResumen




viernes, 8 de marzo de 2019

Seminario web de MongoDB

Me llego un mail de la gente de MongoDB y quería compartirlo con ustedes:


MongoDB
Hola Pablo (porque me llamo Pablo tambien) ,

Participe en nuestro seminario web y descubra cómo crear su primera aplicación en Atlas, nuestro servicio en la nube.

Descubra:

  • Cómo empezar a usar MongoDB Atlas
  • Cómo realizar operaciones CRUD básicas en el shell de MongoDB
  • Cómo utilizar MongoDB Compass para visualizar datos y realizar consultas

INSCRÍBASE AHORA

Este es el segundo de los cinco seminarios web de la serie Back to Basics, en los que se describen las nociones básicas de MongoDB. Le ayudarán a conocer la solución y los casos en los que resulta idónea.

Esperamos verle pronto.

Saludos cordiales,

El equipo de MongoDB

miércoles, 6 de marzo de 2019

Libros gratuitos de Java Code Geeks

Download Dev Guides!

 
Web development is a broad term for the work involved in developing a website for the Internet (World Wide Web) or an intranet (a private network). Web development can range from developing the simplest static single page of plain text to the most complex web-based internet applications, electronic businesses, and social network services. A more comprehensive list of tasks to which web development commonly refers, may include web engineering, web design, web content development, client liaison, client-side/server-side scripting, web server and network security configuration, and ecommerce development. Among web professionals, “web development” usually refers to the main non-design aspects of building web sites: writing markup and coding. Most recently Web development has come to mean the creation of content management systems or CMS. The aim of this minibook is to provide a wide range of questions that a web developer can be asked during a job interview. Preparing for a job interview can be a daunting process if the scope of what is to be asked is so large. Web development includes a considerable set of skills and languages, and an interview of this scale is sure to be all inclusive regarding the various web technologies.
 
 
Web development is a broad term for the work involved in developing a website for the Internet (World Wide Web) or an intranet (a private network). Web development can range from developing the simplest static single page of plain text to the most complex web-based internet applications, electronic businesses, and social network services. A more comprehensive list of tasks to which web development commonly refers, may include web engineering, web design, web content development, client liaison, client-side/server-side scripting, web server and network security configuration, and ecommerce development. Among web professionals, “web development” usually refers to the main non-design aspects of building web sites: writing markup and coding. Most recently Web development has come to mean the creation of content management systems or CMS. The web has been around for many years now, but the real advancements and innovation from it are being seen this last decade. Everything just seems to have gotten better and more productive as both programmers and technology put efforts into creating some fundamental standards everyone would follow to work on the web. In this guide, we inspect the most important aspect of the modern web, programming languages, which form the core of every single web page we see on the internet every day. 
 
 
Git is, without any doubt, the most popular version control system. Ironically, there are other version control systems easier to learn and to use, but, despite that, Git is the favorite option for developers, which is quite clarifying about the powerfulness of Git. Git has become the de-facto tool used for distributed version control. For this reason we have provided an abundance of tutorials here at Java Code Geeks, most of which can be found here. Now, we wanted to create a standalone, reference guide to provide a framework on how to work with Git and help you quickly kick-start your own projects. Here we will cover all the topics needed to know in order to use Git properly, from explaining what is it and how it differs from other tools, to its usage, covering also advanced topics and practices that can suppose an added value to the process of version controlling. Enjoy!
 
 
Eclipse is an integrated development environment (IDE) used in computer programming, and is the most widely used Java IDE. It contains a base workspace and an extensible plug-in system for customizing the environment. Eclipse is written mostly in Java and its primary use is for developing Java applications, but it may also be used to develop applications in other programming languages through the use of plugins. Eclipse provides IDEs and platforms for nearly every language and architecture. They are famous for their Java IDE, C/C++, JavaScript and PHP IDEs built on extensible platforms for creating desktop, Web and cloud IDEs. These platforms deliver the most extensive collection of add-on tools available for software developers.In this ebook, we provide a compilation of Eclipse tutorials that will help you kick-start your own programming projects. 

martes, 5 de marzo de 2019

Snitches en Cassandra

El trabajo de un snitch es determinar la proximidad del host relativa para cada nodo en un clúster, que se utiliza para determinar de qué nodos leer y escribir. Los snitches recopilan información sobre la topología de su red para que Cassandra pueda enrutar las solicitudes de manera eficiente. El snitch descubrirá dónde están los nodos en relación con otros nodos.

A modo de ejemplo, examinemos cómo participa el snitch en una operación de lectura. Cuando Cassandra realiza una lectura, debe contactar una cantidad de réplicas determinadas por el nivel de consistencia. Para admitir la velocidad máxima para las lecturas, Cassandra selecciona una única réplica para consultar el objeto completo y solicita réplicas adicionales para los valores de hash para garantizar que se devuelva la última versión de los datos solicitados. La función de el snitch es ayudar a identificar la réplica que devolverá este dato de forma rápida, y esta es la réplica que se consulta para obtener los datos completos.

El snitch predeterminado (el SimpleSnitch) es la topología inconsciente; es decir, no conoce los racks y los centros de datos en un clúster, lo que lo hace inadecuado para implementaciones de centros de datos múltiples. Por esta razón, Cassandra viene con varios snitches para diferentes entornos de nube, incluyendo Amazon EC2, Google Cloud y Apache Cloudstack.
Los snitches se pueden encontrar en el paquete org.apache.cassandra.locator. Cada snitch implementa la interfaz IEndpointSnitch.

Si bien Cassandra proporciona una manera conectable de describir de forma estática la topología de su clúster, también proporciona una función llamada "snitching dinámico" que ayuda a optimizar el enrutamiento de las lecturas y escrituras a lo largo del tiempo. Así es como funciona. Su snitch seleccionado se envuelve con otro snitch llamado DynamicEndpointSnitch. El snitch dinámico obtiene su comprensión básica de la topología de la snitch seleccionada. A continuación, supervisa el rendimiento de las solicitudes a los otros nodos, e incluso realiza un seguimiento de cosas como qué nodos realizan la compactación. Los datos de rendimiento se utilizan para seleccionar la mejor réplica para cada consulta. Esto permite a Cassandra evitar las solicitudes de enrutamiento a réplicas que tienen un bajo rendimiento.

La implementación de snitching dinámico utiliza una versión modificada del mecanismo de detección de fallas Phi utilizado por los Gossiper(que hablamos el post anterior). El "umbral de maldad" es un parámetro configurable que determina cuánto peor debe realizar un nodo preferido que el nodo con el mejor desempeño para perder su estado preferencial. Las puntuaciones de cada nodo se restablecen periódicamente para permitir que un nodo con un rendimiento deficiente demuestre que se ha recuperado y reclamar su estado preferido.


lunes, 4 de marzo de 2019

Gossip y Detección de fallos en Apache Cassandra


Para admitir la descentralización y la tolerancia de partición, Cassandra usa un protocolo de Gossip que permite a cada nodo realizar un seguimiento de la información de estado sobre los otros nodos en el clúster. El gossiper se ejecuta cada segundo en un temporizador.

Los protocolos de Gossip (a veces llamados "protocolos epidémicos") generalmente asumen una red defectuosa, se emplean comúnmente en sistemas de redes muy grandes y descentralizados, y se usan a menudo como un mecanismo automático para la replicación en bases de datos distribuidas.

Toman su nombre del concepto de chisme humano, una forma de comunicación en la que los compañeros pueden elegir con quién desean intercambiar información y no solo intercambian información de ellos mismos sino tambien de otros compañeros, lo que permite disminuir el trafico de la red, ya que no todos se comunican con todos.

El protocolo de Gossip en Cassandra se implementa principalmente mediante la clase org.apache.cassandra.gms.Gossiper, que es responsable de administrar los chismes para el nodo local. Cuando se inicia un nodo de servidor, se registra con el gossiper para recibir información del estado del punto final.

Debido a que los Gossip de Cassandra se usan para la detección de fallas, la clase Gossiper mantiene una lista de nodos que están vivos y muertos.

Así es como funciona el Gossiper:

  1. Una vez por segundo, el Gossiper elegirá un nodo aleatorio en el clúster e iniciará una sesión de chismes con él. Cada ronda de chismes requiere tres mensajes.
  2. El iniciador de chismes envía a su amigo elegido un GossipDigestSynMessage.
  3. Cuando el amigo recibe este mensaje, devuelve un GossipDigestAckMessage.
  4. Cuando el iniciador recibe el mensaje de acuse de recibo del amigo, le envía un mensaje de GossipDigestAck2 para que complete la ronda de chismes.

Cuando el Gossiperer determina que otro punto final está muerto, "condena" ese punto final al marcarlo como muerto en su lista local y registrar ese hecho.

Cassandra tiene un soporte robusto para la detección de fallas, como lo especifica un algoritmo popular para la computación distribuida llamada Phi Accrual Failure Detection. Esta forma de detección de fallas se originó en el Instituto Avanzado de Ciencia y Tecnología en Japón en 2004.

La detección del fracaso acumulado se basa en dos ideas principales. La primera idea general es que la detección de fallas debe ser flexible, lo que se logra al desacoplarla de la aplicación que se está monitoreando. La segunda y más novedosa idea desafía la noción de detectores de falla tradicionales, que se implementan mediante simples "latidos" y deciden si un nodo está muerto o no, según si se recibe un latido o no. Pero la detección de fallos acumulados decide que este enfoque es ingenuo, y encuentra un lugar entre los extremos de muertos y vivos, un nivel de sospecha.

Por lo tanto, el sistema de monitoreo de fallas genera un nivel continuo de "sospecha" con respecto a la confianza de que un nodo ha fallado. Esto es deseable porque puede tener en cuenta las fluctuaciones en el entorno de red. Por ejemplo, solo porque una conexión quede atrapada no significa necesariamente que todo el nodo esté muerto.

Por lo tanto, la sospecha ofrece una indicación más fluida y proactiva de la posibilidad de falla más débil o más fuerte basada en la interpretación (el muestreo de los latidos), en lugar de una simple evaluación binaria.

La detección de fallos se implementa en Cassandra mediante la clase org.apache.cassandra.gms.FailureDetector, que implementa la interfaz org.apache.cassandra.gms.IFailureDetector. Juntos, permiten operaciones que incluyen:

  • isAlive (InetAddress) : Lo que el detector informará sobre la vida de un nodo dado.
  • interpret (InetAddress): Utilizado por el Gossiper para ayudarlo a decidir si un nodo está vivo o no basado en nivel de sospecha alcanzado mediante el cálculo de Phi.
  • report (InetAddress) : Cuando un nodo recibe un latido, invoca este método.


domingo, 3 de marzo de 2019

La arquitectura de Cassandra


Vamos a examinar la arquitectura de Apache Cassandra, para entender como trabaja. Los nodos interactúan de un modo peer-to-peer o punto a punto, y para conocer donde están los datos utilizan técnicas de gossip, anti-entropy y hinted handoff que vamos a ir desarrollando en este post y los próximos.

Cassandra nos permite separar nuestros nodos en racks y datacenters, esto nos da ventajas a la hora de tener los datos separados en diferentes ubicaciones geográficas. Un rack en un conjunto de nodos , físicamente tiene en cuenta que un rack siempre son maquinas que están próximas, idealmente en un mismo rack. Un datacenter es un conjunto de rack que se encuentran en el mismo edificio físico y conectadas a la misma red.

Cassandra aprovecha la información que proporciona sobre la topología de su clúster para determinar dónde almacenar los datos y cómo encaminar las consultas de manera eficiente. Cassandra intenta almacenar copias de sus datos en múltiples centros de datos para maximizar la disponibilidad y la tolerancia de partición, mientras que prefiere enrutar las consultas a los nodos en el centro de datos local para maximizar el rendimiento.