sábado, 30 de diciembre de 2023

Feliz Navidad y buen año para todos!!


Como todos los años les deseo una feliz navidad y un buen 2024. 

Gracias por leerme! 

viernes, 29 de diciembre de 2023

IntoIterator en Rust


El trait Iterator le indica cómo iterar una vez que haya creado un iterador. El trait relacionado IntoIterator define cómo crear un iterador para un tipo. Es utilizado automáticamente por el bucle for.


struct Grid {

    x_coords: Vec<u32>,

    y_coords: Vec<u32>,

}


impl IntoIterator for Grid {

    type Item = (u32, u32);

    type IntoIter = GridIter;

    fn into_iter(self) -> GridIter {

        GridIter { grid: self, i: 0, j: 0 }

    }

}


struct GridIter {

    grid: Grid,

    i: usize,

    j: usize,

}


impl Iterator for GridIter {

    type Item = (u32, u32);


    fn next(&mut self) -> Option<(u32, u32)> {

        if self.i >= self.grid.x_coords.len() {

            self.i = 0;

            self.j += 1;

            if self.j >= self.grid.y_coords.len() {

                return None;

            }

        }

        let res = Some((self.grid.x_coords[self.i], self.grid.y_coords[self.j]));

        self.i += 1;

        res

    }

}


fn main() {

    let grid = Grid {

        x_coords: vec![3, 5, 7, 9],

        y_coords: vec![10, 20, 30, 40],

    };

    for (x, y) in grid {

        println!("point = {x}, {y}");

    }

}


Cada implementación de IntoIterator debe declarar dos tipos:

  • Item: el tipo sobre el que se va a iterar, como i8,
  • IntoIter: el tipo de Iterator devuelto por el método into_iter.

Tenga en cuenta que IntoIter y Item están vinculados: el iterador debe tener el mismo tipo de elemento, lo que significa que devuelve Option<Item>

El ejemplo itera sobre todas las combinaciones de coordenadas x e y.


domingo, 24 de diciembre de 2023

Iterator en Rust


El trait Iterator admite la iteración sobre valores en una colección. Requiere un método next y proporciona muchos métodos. Muchos tipos de bibliotecas estándar implementan Iterator y usted también puede implementarlo usted mismo:


struct Fibonacci {

    curr: u32,

    next: u32,

}


impl Iterator for Fibonacci {

    type Item = u32;


    fn next(&mut self) -> Option<Self::Item> {

        let new_next = self.curr + self.next;

        self.curr = self.next;

        self.next = new_next;

        Some(self.curr)

    }

}


fn main() {

    let fib = Fibonacci { curr: 0, next: 1 };

    for (i, n) in fib.enumerate().take(5) {

        println!("fib({i}): {n}");

    }

}


Iterator implementa muchas operaciones de programación funcional comunes sobre colecciones (por ejemplo, mapear, filtrar, reducir, etc.). Este es el rasgo donde puedes encontrar toda la documentación sobre ellos. En Rust, estas funciones deberían producir un código tan eficiente como las implementaciones imperativas equivalentes.

sábado, 23 de diciembre de 2023

Invertir una lista en prolog


Si queremos invertir una lista en prolog lo que podemos hacer es utilizar el predicado union del post anterior y hacer lo siguiente : 


inversa([], []).

inversa([H|T], L) :-

    inversa(T, IT),

    union(IT, [H], L).


Lo probamos : 


inversa([1,2,3,4], X)

X = [4, 3, 2, 1]

Introducción a gRPC


gRPC es un sistema de llamadas a procedimientos remotos (RPC) de código abierto desarrollado por Google. Se basa en el protocolo HTTP/2 para la comunicación entre servicios, lo que ofrece una comunicación eficiente y de bajo consumo de recursos.

Características Principales:

  • Protocolo basado en HTTP/2: Utiliza HTTP/2 como su protocolo subyacente, lo que proporciona una comunicación más rápida, eficiente y multiplexada.
  • IDL y generación de código: Utiliza Protocol Buffers (protobuf) para definir la estructura del servicio y los mensajes intercambiados entre los clientes y servidores. Esto permite la generación automática de código en varios lenguajes.
  • Soporte para múltiples lenguajes: Ofrece soporte para una variedad de lenguajes de programación, lo que permite a los desarrolladores construir servicios heterogéneos y sistemas distribuidos.
  • Tipado fuerte y serialización eficiente: Utiliza Protocol Buffers para la serialización de datos, lo que resulta en una comunicación más rápida y eficiente que otros métodos de serialización.

Ventajas:

  • Alta eficiencia y rendimiento en la comunicación entre microservicios.
  • Facilita la creación de servicios interoperables en diferentes lenguajes.
  • Útil en entornos distribuidos, como arquitecturas de microservicios, Internet de las cosas (IoT) y sistemas basados en la nube.


Veamos un ejemplo de un protobuf:

syntax = "proto3";


service Greeter {

  rpc SayHello (HelloRequest) returns (HelloResponse) {}

}


message HelloRequest {

  string name = 1;

}


message HelloResponse {

  string message = 1;

}



gRPC ofrece una forma eficiente y poderosa de comunicación entre servicios, facilitando el desarrollo de aplicaciones distribuidas escalables y de alto rendimiento. Su capacidad para generar código y su enfoque en la eficiencia lo convierten en una herramienta valiosa para la construcción de sistemas modernos y distribuidos.

Tal vez te preguntas si esto va a sustituir a Rest y la respuesta es no, Rest proporciona una interfaz clara tanto para aplicaciones como para humanos para aplicaciones en cambio gRPC sacrifica la claridad de las apis en post de una mayor eficiencia. 

Si tenes que hacer una API que no interesa tanto la performance y es necesario que sea super clara para que todo el mundo la use, Rest es la mejor opción. Si es necesaria una comunicación rápida entre sistemas que tengo el control, gRPC viene bien. 

Dejo link: https://grpc.io/



viernes, 22 de diciembre de 2023

Unir dos listas en prolog


Vamos a hacer un predicado que una dos listas en prolog: 


unir([], Lista, Lista).

unir([X | Resto], Lista, [X | Resultado]) :-

   unir(Resto, Lista, Resultado).


Y lo vamos a probar : 

unir([5,6,7],[1,2,3,4], X)

X = [5, 6, 7, 1, 2, 3, 4]

jueves, 21 de diciembre de 2023

Maps en Go


Los maps son una estructura de datos que asocia valores de un tipo (la clave) con valores de otro tipo (el elemento o valor). La clave puede ser de cualquier tipo para el que esté definido el operador de igualdad, como números enteros, números de punto flotante y complejos, cadenas, punteros, interfaces (siempre que el tipo dinámico admita la igualdad), estructuras y matrices. Los slices no se pueden utilizar como claves de map porque la igualdad no está definida en ellos. Al igual que los slices, los map contienen referencias a una estructura de datos subyacente. Si pasa un map a una función que cambia el contenido del map, los cambios serán visibles en la persona que llama.

Los map se pueden construir utilizando la sintaxis literal compuesta habitual con pares clave-valor separados por dos puntos, por lo que es fácil construirlos durante la inicialización.0


var timeZone = map[string]int{

    "UTC":  0*60*60,

    "EST": -5*60*60,

    "CST": -6*60*60,

    "MST": -7*60*60,

    "PST": -8*60*60,

}


Asignar y recuperar valores de maps parece sintácticamente igual que hacer lo mismo con matrices y slices, excepto que no es necesario que el índice sea un número entero.


offset := timeZone["EST"]


Un intento de recuperar un valor de mapa con una clave que no está presente en el mapa devolverá el valor cero para el tipo de entradas en el mapa. Por ejemplo, si el mapa contiene números enteros, buscar una clave inexistente devolverá 0. Un conjunto se puede implementar como un mapa con valor de tipo bool. 

attended := map[string]bool{

    "Ann": true,

    "Joe": true,

    ...

}


if attended[person] { // will be false if person is not in the map

    fmt.Println(person, "was at the meeting")

}


A veces es necesario distinguir una entrada faltante de un valor cero. ¿Hay una entrada para "UTC" o es 0 porque no está en el mapa? Se puede discriminar con una forma de asignación múltiple.


var seconds int

var ok bool

seconds, ok = timeZone[tz]


Por razones obvias, esto se denomina modismo "coma ok". En este ejemplo, si tz está presente, los segundos se configurarán apropiadamente y ok será verdadero; de lo contrario, los segundos se establecerán en cero y ok será falso. Aquí hay una función que lo combina con un bonito informe de errores:


func offset(tz string) int {

    if seconds, ok := timeZone[tz]; ok {

        return seconds

    }

    log.Println("unknown time zone:", tz)

    return 0

}


Para probar la presencia en el mapa sin preocuparse por el valor real, puede utilizar el identificador en blanco (_) en lugar de la variable habitual para el valor.


_, present := timeZone[tz]


Para eliminar una entrada de mapa, utilice la función incorporada de eliminación, cuyos argumentos son el mapa y la clave que se va a eliminar. Es seguro hacer esto incluso si la clave ya no está en el mapa.


delete(timeZone, "PDT")  // Now on Standard Time


martes, 19 de diciembre de 2023

Predicado que nos indique si un elemento existe en una lista en prolog


Vamos a hacer un predicado que nos indique si un elemento existe en una lista en prolog: 


existe(Elemento, [Elemento | _]).

existe(Elemento, [_ | Tail]) :-

    existe(Elemento, Tail).


Si la probamos : 


existe(5,[1,2,3,4])

false

existe(4,[1,2,3,4])

true

lunes, 18 de diciembre de 2023

Contar elementos de una lista en prolog


Vamos a hacer un predicado que cuenten los elementos de una lista en prolog: 

count_elements([], 0).

count_elements([_ | Tail], Count) :-

    count_elements(Tail, TailCount),

    Count is TailCount + 1.

Contar valores que cumplan un criterio en Lisp

 


Función para contar valores de una lista en lisp según un criterio (que va a ser una función) : 

(defun contarSegun (lista fx) 

 (cond

     ((null lista) 0)

     ((funcall fx (first lista)) 

           (+ (contarSegun (rest lista) fx) 1))

     (T (contarSegun (rest lista) fx))

 )

)


Y vamos a probarla : 


> (contarSegun '(1 2 3 4 5 6) (lambda (a) (> a 3)))

3


> (contarSegun '(1 2 3 4 5 6) (lambda (a) (>= a 3)))

4


> (contarSegun '(1 2 3 4 5 6) (lambda (a) (= a 3)))

1


sábado, 16 de diciembre de 2023

Slices en Rust


Los Slices brindan una vista de una colección más grande, es como una porción:


fn main() {

    let mut a: [i32; 6] = [10, 20, 30, 40, 50, 60];

    println!("a: {a:?}");

    let s: &[i32] = &a[2..4];

    println!("s: {s:?}");

}


Los Slice toman prestados el tipo del arreglo.

Si el Slice comienza en el índice 0, la sintaxis de rango de Rust nos permite eliminar el índice inicial, lo que significa que &a[0..a.len()] y &a[..a.len()] son idénticos. Lo mismo ocurre con el último índice, por lo que &a[2..a.len()] y &a[2..] son idénticos. Por lo tanto, para crear fácilmente un  Slice de todo el vector, podemos usar &a[..].

El tipo de s (&[i32]) ya no menciona la longitud de la matriz. Esto nos permite realizar cálculos en sectores de diferentes tamaños.

miércoles, 13 de diciembre de 2023

¿Qué es Go-Zero?

 


En el mundo del desarrollo de software, la velocidad, la eficiencia y la simplicidad son pilares fundamentales. El framework Go-Zero emerge como una solución poderosa para aquellos que buscan crear aplicaciones escalables y de alto rendimiento utilizando el lenguaje de programación Go (Golang).


Pero ¿Qué es Go-Zero? Go-Zero es un framework moderno y de código abierto diseñado para acelerar el proceso de desarrollo de aplicaciones en Go. Ofrece una arquitectura robusta y flexible, proporcionando herramientas y patrones que permiten construir aplicaciones web, API y microservicios de manera eficiente.


Características Principales:

  • Alto rendimiento: Go-Zero se destaca por su capacidad para manejar cargas de trabajo intensivas y mantener un alto rendimiento incluso en entornos de gran escala.
  • Productividad mejorada: Proporciona abstracciones y utilidades que reducen la complejidad del código, permitiendo a los desarrolladores enfocarse en la lógica de negocio en lugar de detalles de implementación.
  • Facilidad de uso: Con una curva de aprendizaje amigable, su estructura modular y su amplia documentación, Go-Zero facilita a los desarrolladores tanto principiantes como experimentados.
  • Soporte para microservicios: Ofrece herramientas específicas para la construcción de arquitecturas de microservicios, simplificando la comunicación entre ellos y la gestión de datos distribuidos.
Veamos un ejemplo básico de cómo se podría crear un servidor HTTP simple utilizando el framework Go-Zero:

package main

import (
"github.com/tal-tech/go-zero/core/conf"
"github.com/tal-tech/go-zero/rest"
"github.com/tal-tech/go-zero/rest/httpx"
)

type Request struct {
Name string `form:"name"`
}

type Response struct {
Message string `json:"message"`
}

func helloHandler(w httpx.ResponseWriter, r *httpx.Request) {
var req Request
if err := r.ParseForm(&req); err != nil {
w.Error(httpx.BadRequest(err.Error()))
return
}

resp := Response{
Message: "Hello, " + req.Name + "!",
}
w.WriteJson(resp)
}

func main() {
var c rest.RestConf
conf.MustLoad("path/to/config.yaml", &c)

server := rest.MustNewServer(c)
server.AddRoute(rest.Route{
Method:  "GET",
Path:    "/hello",
Handler: helloHandler,
})
defer server.Stop()

server.Start()
}


Go-Zero representa una opción valiosa para aquellos que buscan desarrollar aplicaciones en Go de manera rápida, eficiente y escalable. Su enfoque en el rendimiento y la productividad lo convierten en una herramienta atractiva para proyectos de diversos tamaños y complejidades.

Dejo link: https://github.com/zeromicro/go-zero

sábado, 9 de diciembre de 2023

Comienza a usar la IA generativa

 Me llego el siguiente mail y queria compartirlo : 

Manejo de memoria en Rust



Los programas asignan memoria de dos maneras:

stack: Área continua de memoria para variables locales.

Los valores tienen tamaños fijos conocidos en el momento de la compilación.

Extremadamente rápido: basta con mover un puntero de pila.

Fácil de administrar: sigue llamadas a funciones.

Gran recuerdo de la localidad.


heap: almacenamiento de valores fuera de las llamadas a funciones.

Los valores tienen tamaños dinámicos determinados en tiempo de ejecución.

Ligeramente más lento que la pila: se necesita algo de contabilidad.

No hay garantía de localidad de memoria.


Veamos un ejemplo: La creación de una cadena coloca metadatos de tamaño fijo en el stack y datos de tamaño dinámico, la cadena real, en el heap:


fn main() {

    let s1 = String::from("Hello");

}




Una cadena está respaldada por un Vec, por lo que tiene capacidad y longitud y puede crecer si es mutable mediante reasignación en el heap.

Podemos inspeccionar el diseño de la memoria con Rust pero esto no es seguro.

fn main() {
    let mut s1 = String::from("Hello");
    s1.push(' ');
    s1.push_str("world");
    // DON'T DO THIS AT HOME! For educational purposes only.
    // String provides no guarantees about its layout, so this could lead to
    // undefined behavior.
    unsafe {
        let (ptr, capacity, len): (usize, usize, usize) = std::mem::transmute(s1);
        println!("ptr = {ptr:#x}, len = {len}, capacity = {capacity}");
    }
}


martes, 5 de diciembre de 2023

Slices bidimensionales en Go


Las matrices y Slices de Go son unidimensionales. Para crear el equivalente de una matriz o un Slice 2D, es necesario definir un conjunto de matrices o un Slice de Slices, como este:


type Transform [3][3]float64  // A 3x3 array, really an array of arrays.

type LinesOfText [][]byte     // A slice of byte slices.


Debido a que los Slices tienen una longitud variable, es posible que cada Slice interno tenga una longitud diferente. Esa puede ser una situación común, como en nuestro ejemplo de LinesOfText: cada línea tiene una longitud independiente.


text := LinesOfText{

    []byte("Now is the time"),

    []byte("for all good gophers"),

    []byte("to bring some fun to the party."),

}

A veces es necesario asignar un Slice 2D, una situación que puede surgir al procesar líneas de escaneo de píxeles, por ejemplo. Hay dos formas de lograrlo. Una es asignar cada porción de forma independiente; la otra es asignar una única matriz y apuntar los sectores individuales hacia ella. Cuál usar depende de su aplicación. Si los sectores pueden crecer o reducirse, deben asignarse de forma independiente para evitar sobrescribir la siguiente línea; de lo contrario, puede ser más eficiente construir el objeto con una única asignación. Como referencia, aquí hay bocetos de los dos métodos. Primero, una línea a la vez:


// Allocate the top-level slice.

picture := make([][]uint8, YSize) // One row per unit of y.

// Loop over the rows, allocating the slice for each row.

for i := range picture {

    picture[i] = make([]uint8, XSize)

}


Y ahora como una asignación, dividida en líneas:


// Allocate the top-level slice, the same as before.

picture := make([][]uint8, YSize) // One row per unit of y.

// Allocate one large slice to hold all the pixels.

pixels := make([]uint8, XSize*YSize) // Has type []uint8 even though picture is [][]uint8.

// Loop over the rows, slicing each row from the front of the remaining pixels slice.

for i := range picture {

    picture[i], pixels = pixels[:XSize], pixels[XSize:]

}

lunes, 4 de diciembre de 2023

Closures en Rust


Los Closures o expresiones lambda tienen tipos que no se pueden nombrar. Sin embargo, implementan características especiales de Fn, FnMut y FnOnce:


fn apply_with_log(func: impl FnOnce(i32) -> i32, input: i32) -> i32 {

    println!("Calling function on {input}");

    func(input)

}


fn main() {

    let add_3 = |x| x + 3;

    println!("add_3: {}", apply_with_log(add_3, 10));

    println!("add_3: {}", apply_with_log(add_3, 20));


    let mut v = Vec::new();

    let mut accumulate = |x: i32| {

        v.push(x);

        v.iter().sum::<i32>()

    };

    println!("accumulate: {}", apply_with_log(&mut accumulate, 4));

    println!("accumulate: {}", apply_with_log(&mut accumulate, 5));


    let multiply_sum = |x| x * v.into_iter().sum::<i32>();

    println!("multiply_sum: {}", apply_with_log(multiply_sum, 3));

}


Una Fn (por ejemplo, add_3) no consume ni muta los valores capturados, o tal vez no captura nada en absoluto. Se puede llamar varias veces al mismo tiempo.

Un FnMut (por ejemplo, acumular) podría mutar los valores capturados. Puedes llamarlo varias veces, pero no al mismo tiempo.

Si tiene un FnOnce (por ejemplo, multiplicar_sum), solo puede llamarlo una vez. Podría consumir valores capturados.

FnMut es un subtipo de FnOnce. Fn es un subtipo de FnMut y FnOnce. Es decir. puede usar un FnMut donde sea que se requiera un FnOnce, y puede usar un Fn donde sea que se requiera un FnMut o FnOnce.

El compilador también infiere Copy (por ejemplo, para add_3) y Clone (por ejemplo, multiply_sum), dependiendo de lo que capture el Closure.

De forma predeterminada, los Closures trabajan por referencia si pueden. La palabra clave move los hace capturar por valor.


fn make_greeter(prefix: String) -> impl Fn(&str) {

    return move |name| println!("{} {}", prefix, name)

}


fn main() {

    let hi = make_greeter("Hi".to_string());

    hi("there");

}


sábado, 2 de diciembre de 2023

Casting en Rust


Rust no tiene conversiones de tipos implícitas, pero admite conversiones explícitas con as. 

fn main() {

    let value: i64 = 1000;

    println!("as u16: {}", value as u16);

    println!("as i16: {}", value as i16);

    println!("as u8: {}", value as u8);

}


Los resultados de as siempre están definidos en Rust y son consistentes en todas las plataformas. Es posible que esto no coincida con su intuición para cambiar el signo o transformar a un tipo más pequeño; debemos consultar la documentación.

Generalmente se desaconseja el uso de as en casos en los que se puedan perder datos, o al menos merece un comentario explicativo.

Función para filtrar valores de una lista en lisp


Vamos a hacer rápidamente una función que permita filtrar valores de una lista según una función. Veamos el código : 

(defun filtrar (lista fx) 

  (cond 

     ((null lista) lista) 

     ((funcall fx (first lista)) 

         (cons (first lista) (filtrar (rest lista) fx)))

     (T (filtrar (rest lista) fx))

  )

Si la lista esta vacía la retorna, sino se fija si ese elemento cumple el criterio y si lo cumple construye una nueva lista con este elemento y el resto filtrado. Y si no retorna el resto de la lista filtrado. 


Veamos si funciona: 


> (filtrar '(1 2 3 4 5) (lambda (a) (> a 5)))

NIL


> (filtrar '(1 2 3 4 5) (lambda (a) (> a 2)))

(3 4 5)


> (filtrar '(1 2 3 4 5) (lambda (a) (< a 2)))

(1)



viernes, 1 de diciembre de 2023

Traits From y Into de Rust


Los tipos que implementan From y Into facilitan las conversiones de tipos:

fn main() {

    let s = String::from("hello");

    let addr = std::net::Ipv4Addr::from([127, 0, 0, 1]);

    let one = i16::from(true);

    let bigger = i32::from(123i16);

    println!("{s}, {addr}, {one}, {bigger}");

}

Into se implementa automáticamente cuando se implementa From:

fn main() {

    let s: String = "hello".into();

    let addr: std::net::Ipv4Addr = [127, 0, 0, 1].into();

    let one: i16 = true.into();

    let bigger: i32 = 123i16.into();

    println!("{s}, {addr}, {one}, {bigger}");

}

Es por eso que es común implementar solo From, ya que su tipo también entrará en la implementación de Into.

Al declarar un tipo de entrada de argumento de función como "cualquier cosa que pueda convertirse en una cadena", la regla es la opuesta, debes usar Into. Su función aceptará tipos que implementen From y aquellos que solo implementen Into.


jueves, 30 de noviembre de 2023

Testear endpoints en go con echo

Supongamos que tenemos unos endpoints hechos con echo:

package handler


import (

    "net/http"

    "github.com/labstack/echo/v4"

)


type (

    User struct {

        Name  string `json:"name" form:"name"`

        Email string `json:"email" form:"email"`

    }

    handler struct {

        db map[string]*User

    }

)


func (h *handler) createUser(c echo.Context) error {

    u := new(User)

    if err := c.Bind(u); err != nil {

        return err

    }

    return c.JSON(http.StatusCreated, u)

}


func (h *handler) getUser(c echo.Context) error {

    email := c.Param("email")

    user := h.db[email]

    if user == nil {

        return echo.NewHTTPError(http.StatusNotFound, "user not found")

    }

    return c.JSON(http.StatusOK, user)

}


Lo que queremos hacer es un test de unidad que testee este comportamiento, y podemos hacerlo así: 


package handler


import (

    "net/http"

    "net/http/httptest"

    "strings"

    "testing"


    "github.com/labstack/echo/v4"

    "github.com/stretchr/testify/assert"

)


var (

    mockDB = map[string]*User{

        "jon@labstack.com": &User{"Jon Snow", "jon@labstack.com"},

    }

    userJSON = `{"name":"Jon Snow","email":"jon@labstack.com"}`

)


func TestCreateUser(t *testing.T) {

    // Setup

    e := echo.New()

    req := httptest.NewRequest(http.MethodPost, "/", strings.NewReader(userJSON))

    req.Header.Set(echo.HeaderContentType, echo.MIMEApplicationJSON)

    rec := httptest.NewRecorder()

    c := e.NewContext(req, rec)

    h := &handler{mockDB}


    // Assertions

    if assert.NoError(t, h.createUser(c)) {

        assert.Equal(t, http.StatusCreated, rec.Code)

        assert.Equal(t, userJSON, rec.Body.String())

    }

}


func TestGetUser(t *testing.T) {

    // Setup

    e := echo.New()

    req := httptest.NewRequest(http.MethodGet, "/", nil)

    rec := httptest.NewRecorder()

    c := e.NewContext(req, rec)

    c.SetPath("/users/:email")

    c.SetParamNames("email")

    c.SetParamValues("jon@labstack.com")

    h := &handler{mockDB}


    // Assertions

    if assert.NoError(t, h.getUser(c)) {

        assert.Equal(t, http.StatusOK, rec.Code)

        assert.Equal(t, userJSON, rec.Body.String())

    }

}


Y listo!! 


Dejo link: https://echo.labstack.com/docs/testing

lunes, 27 de noviembre de 2023

Unir dos listas en lisp


Vamos a unir dos listas en Lisp. Si la primera lista es vacia, retornamos la otra lista y si no lo es, costruimos una nueva lista con el primer elemento de la primera lista y la union del resto de la primera lista (porque al primero ya lo sacamos) con la otra lista. 

(defun unir (lista1 lista2) 

  (cond 

    ((null lista1) lista2)

    (T (cons (first lista1) (unir (rest lista1) lista2)))

  )

)


Si probamos : 

> (unir '(1 2 3) '(4 5 6))

(1 2 3 4 5 6)


> (unir '(1 2 3) '(4))

(1 2 3 4)


Sobrecarga de operadores por medio de traits en Rust


 La sobrecarga del operador se implementa mediante rasgos en std::ops:

#[derive(Debug, Copy, Clone)]

struct Point { x: i32, y: i32 }


impl std::ops::Add for Point {

    type Output = Self;


    fn add(self, other: Self) -> Self {

        Self {x: self.x + other.x, y: self.y + other.y}

    }

}


fn main() {

    let p1 = Point { x: 10, y: 20 };

    let p2 = Point { x: 100, y: 200 };

    println!("{:?} + {:?} = {:?}", p1, p2, p1 + p2);

}

Si lo ejecutamos : 

cargo run main.rs

   Compiling hello_cargo v0.1.0 

    Finished dev [unoptimized + debuginfo] target(s) in 0.58s

     Running `target/debug/hello_cargo main.rs`

Point { x: 10, y: 20 } + Point { x: 100, y: 200 } = Point { x: 110, y: 220 }


Podrías implementar Add para &Point. Si el tipo T para el cual está sobrecargando el operador no implementa Copy, debería considerar sobrecargar también el operador para &T. Esto evita clonaciones innecesarias.

Se podría implementar Add para dos tipos diferentes, p. impl Add<(i32, i32)> for Point agregaría una tupla a un Point.

Sería así :


impl std::ops::Add<(i32, i32)>  for Point {

    type Output = Self;


    fn add(self, other: (i32, i32)) -> Self {

        Self {x: self.x + other.0, y: self.y + other.1}

    }

}


fn main() {

    let p1 = Point { x: 10, y: 20 };

    let tuple= (100, 200);

    println!("{:?} + {:?} = {:?}", p1, tuple, p1 + tuple);

}


Y la salida va a ser : 

Point { x: 10, y: 20 } + (100, 200) = Point { x: 110, y: 220 }


sábado, 25 de noviembre de 2023

Buscando el mayor y el menor en lisp


Ahora lo que vamos a hacer es buscar el menor o el mayor de una lista. El algoritmo es similar, por lo tanto vamos a utilizar una función general que busque según una función y luego escribimos el mayor o menor pasando un lambda que busque eso (con eso me refiero al menor o al mayor) : 


(defun buscar (lista fx)

  (cond

    ((null (rest lista)) (first lista))

    ((funcall fx (first lista) (buscar (rest lista) fx)) (first lista))

    (T (buscar (rest lista) fx))

  )

)


(defun menor (lista)

  (buscar lista (lambda (a b) (< a b)))

)


(defun mayor (lista)

  (buscar lista (lambda (a b) (> a b)))

)

El algoritmo buscar lo que hace es si la lista tiene un solo elemento, ya esta ese es el menor o el mayor. Si no compara el primero con el buscar del resto, por ejemplo para el menor, compara el primero con el menor del resto, si es verdadero ese es el menor y si no el menor es el menor del resto. 

Y listo! 

Comenten si quieren más algoritmos así. 

miércoles, 22 de noviembre de 2023

Quicksort in lisp


Un Algoritmo que me gusta mucho es el quicksort, porque es un algoritmo por demás claro. Ya he escrito lo fácil que es implementarlo en haskell 

Ahora le toca a lisp. Básicamente el algoritmo toma un pivot y agrupa los menores del pivot al principio y los mayores al final y aplica quicksort a estos 2 grupos. Y si la lista es vacia, ya esta ordenada. 

Vamos al código: 


(defun qso (l) 

   (cond 

     ((null l) l)

     (T (append 

         (qso (remove-if (lambda (a) (> a (first l))) (rest l)))

         (cons 

           (first l)

           (qso (remove-if (lambda (a) (<= a (first l))) (rest l)))

         )

        )

     )

   )

)


El Trait Default

 


El Trait Default produce un valor predeterminado para un tipo.

#[derive(Debug, Default)]

struct Derived {

    x: u32,

    y: String,

    z: Implemented,

}


#[derive(Debug)]

struct Implemented(String);


impl Default for Implemented {

    fn default() -> Self {

        Self("John Smith".into())

    }

}


fn main() {

    let default_struct = Derived::default();

    println!("{default_struct:#?}");


    let almost_default_struct = Derived {

        y: "Y is set!".into(),

        ..Derived::default()

    };

    println!("{almost_default_struct:#?}");


    let nothing: Option<Derived> = None;

    println!("{:#?}", nothing.unwrap_or_default());

}

  • Se puede implementar directamente o se puede derivar mediante #[derive(Default)].
  • Una implementación derive producirá un valor en el que todos los campos se establecerán en sus valores por defecto.
  • Esto significa que todos los tipos de la estructura también deben implementar Default.
  • Los tipos estándar de Rust a menudo implementan el valor predeterminado con valores razonables (por ejemplo, 0, "", etc.).
  • La copia parcial de la estructura funciona bien de forma predeterminada.
  • La biblioteca estándar de Rust es consciente de que los tipos pueden implementar el valor predeterminado y proporciona métodos convenientes para usarlo.
  • la .. sintaxis se llama sintaxis de actualización de estructura

sábado, 18 de noviembre de 2023

El Trait Drop en Rust


Los valores que implementan Drop pueden especificar el código que se ejecutará cuando salgan del alcance:

struct Droppable {

    name: &'static str,

}


impl Drop for Droppable {

    fn drop(&mut self) {

        println!("Dropping {}", self.name);

    }

}


fn main() {

    let a = Droppable { name: "a" };

    {

        let b = Droppable { name: "b" };

        {

            let c = Droppable { name: "c" };

            let d = Droppable { name: "d" };

            println!("Exiting block B");

        }

        println!("Exiting block A");

    }

    drop(a);

    println!("Exiting main");

}


Si ejecutamos esto tenemos: 

Exiting block B

Dropping d

Dropping c

Exiting block A

Dropping b

Dropping a

Exiting main


  • Tenga en cuenta que std::mem::drop no es lo mismo que std::ops::Drop::drop.
  • Los valores se eliminan automáticamente cuando salen del alcance.
  • Cuando se elimina un valor, si implementa std::ops::Drop, se llamará a su implementación Drop::drop.
  • Todos sus campos también se eliminarán, ya sea que implemente Drop o no.

std::mem::drop es solo una función vacía que toma cualquier valor. La importancia es que se apropia del valor, por lo que al final de su alcance se elimina. Esto lo convierte en una forma conveniente de eliminar valores explícitamente antes de que, de otro modo, saldrían del alcance.

Esto puede ser útil para objetos que realizan algún trabajo al soltarlos: liberar bloqueos, cerrar archivos, etc.

lunes, 13 de noviembre de 2023

La función reduce en lisp


Vamos a hacer una función reduce o reducir en lisp. La función reduce nos permite acumular una lista de números por ejemplo o concatenar una lista de string. 

Es decir toma un valor inicial y va acumulando los valores que tiene una lista con una función que se pasa por parámetros. Veamos esto en lisp : 


(defun reducir(inicial lista fx) 

    (cond 

        ((Null lista) inicial)

        (T (reducir (Funcall fx inicial (first lista)) (rest lista) fx))

    )


Si la lista esta vacía, retornamos el acumulador. Si no volvemos a llamar a la función con el valor de la acumulación del primer elemento como valor inicial y el resto del la lista. 


Y podemos llamarlo de la siguiente manera: 

 > (reducir 0 '(1 2 3 4 5) (LAMBDA (a b) (+ a b))) 

15

> (reducir "" '("hola " "Mundo") (LAMBDA (a b) (concatenate 'string a b)))

"hola Mundo"

 > (reducir "" '("uno" "dos" "tres" "super tranquilo") (LAMBDA (a b) (concatenate 'string a " " b)))

" uno dos tres super tranquilo"

Read y Write en Rust


Usando Read y BufRead, nos podemos abstraer a un vector de u8

use std::io::{BufRead, BufReader, Read, Result};


fn count_lines<R: Read>(reader: R) -> usize {

    let buf_reader = BufReader::new(reader);

    buf_reader.lines().count()

}


fn main() -> Result<()> {

    let slice: &[u8] = b"foo\nbar\nbaz\n";

    println!("lines in slice: {}", count_lines(slice));


    let file = std::fs::File::open(std::env::current_exe()?)?;

    println!("lines in file: {}", count_lines(file));

    Ok(())

}


De manera similar, Write nos permite abstraernos de igual forma:


use std::io::{Result, Write};


fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {

    writer.write_all(msg.as_bytes())?;

    writer.write_all("\n".as_bytes())

}


fn main() -> Result<()> {

    let mut buffer = Vec::new();

    log(&mut buffer, "Hello")?;

    log(&mut buffer, "World")?;

    println!("Logged: {:?}", buffer);

    Ok(())

}

Slices en golang


Los Slices envuelven matrices para brindar una interfaz más general, poderosa y conveniente para secuencias de datos. Excepto por elementos con dimensiones explícitas, como matrices de transformación, la mayor parte de la programación de matrices en Go se realiza con Slices en lugar de simples arrays.

Los Slices contienen referencias a una matriz subyacente y, si asigna un Slice a otro, ambos se refieren a la misma matriz. Si una función toma un argumento de tipo Slice, los cambios que realice en los elementos del segmento serán visibles para quien llama, de forma análoga a pasar un puntero a la matriz subyacente. Por lo tanto, una función de lectura puede aceptar un argumento de tipo Slice en lugar de un puntero y una dimensión; la longitud dentro del segmento establece un límite superior de la cantidad de datos que se leerán. Aquí está la firma del método de lectura del tipo de archivo en el paquete os:


func (f *File) Read(buf []byte) (n int, err error)


El método devuelve el número de bytes leídos y un valor de error, si lo hubiera. Para leer los primeros 32 bytes hacemos: 


  n, err := f.Read(buf[0:32])


Este Slice es común y eficiente. De hecho, dejando de lado la eficiencia por el momento, el siguiente fragmento también leería los primeros 32 bytes del búfer.


    var n int

    var err error

    for i := 0; i < 32; i++ {

        nbytes, e := f.Read(buf[i:i+1])  // Read one byte.

        n += nbytes

        if nbytes == 0 || e != nil {

            err = e

            break

        }

    }


La longitud de un segmento se puede cambiar siempre que todavía se ajuste dentro de los límites de la matriz subyacente; simplemente asígnalo a una Slice de sí mismo. La capacidad de un Slice es accesible mediante una función incorporada, informa la longitud máxima que puede asumir el segmento. Aquí hay una función para agregar datos a un slice. Si los datos exceden la capacidad, se reasigna el slice y se devuelve el slice resultante. La función utiliza el hecho de que len y cap son legales cuando se aplican a segmentos nulos y devuelven 0.


func Append(slice, data []byte) []byte {

    l := len(slice)

    if l + len(data) > cap(slice) {  // reallocate

        // Allocate double what's needed, for future growth.

        newSlice := make([]byte, (l+len(data))*2)

        // The copy function is predeclared and works for any slice type.

        copy(newSlice, slice)

        slice = newSlice

    }

    slice = slice[0:l+len(data)]

    copy(slice[l:], data)

    return slice

}


Debemos devolver el slice después porque, aunque Append puede modificar los elementos del slice, el slice en sí (la estructura de datos en tiempo de ejecución que contiene el puntero, la longitud y la capacidad) se pasa por valor.

La idea de agregar un elemento a un slice es tan util que tenemos una función para hacerlo:  append. Sin embargo, para comprender el diseño de esa función necesitamos un poco más de información, por lo que volveremos a ello más adelante.

viernes, 10 de noviembre de 2023

Función map en lisp


Vamos a hacer una función transformar o map en lisp que lo que haga es tome una lista y una función y aplique esa función a cada elemento de la lista. 

Para esto vamos a analizar los casos si la lista esta vacía, ya esta retornamos la lista vacía. Si no esta vacía, creamos una nueva lista aplicando esa función al primer elemento y llamando de forma recursiva la función transformar para el resto. 

Sería así : 

(defun transformar (l fx)

   (cond 

      ((Null l) Nil)

      (T (cons (Funcall fx (first l)) 

           (transformar (rest l) fx)))

    )


Y la podemos llamar de esta manera : 

> (transformar '(1 2 3) (LAMBDA (a) (* a 2)))

(2 4 6)

o

 > (transformar '(1 2 3) (LAMBDA (a) (+ a 1)))

(2 3 4)