Translate

Mostrando las entradas con la etiqueta LLM. Mostrar todas las entradas
Mostrando las entradas con la etiqueta LLM. Mostrar todas las entradas

jueves, 26 de diciembre de 2024

Que es LLM?


Un LLM (Large Language Model) o Modelo de Lenguaje de Gran Escala es un sistema de inteligencia artificial entrenado para procesar, comprender y generar texto en lenguaje humano. Estos modelos son capaces de realizar tareas complejas de procesamiento de lenguaje natural (NLP) gracias a su enorme tamaño y capacidad para aprender patrones del lenguaje.


¿Qué hace un LLM?

Un LLM puede:

  • Responder preguntas y entablar conversaciones (como los chatbots).
  • Generar texto coherente y creativo, desde artículos hasta poesía.
  • Traducir idiomas.
  • Resumir documentos largos.
  • Ayudar en tareas de programación escribiendo o corrigiendo código.


Características Clave de un LLM

1. Entrenamiento con Grandes Volúmenes de Datos: Son entrenados con cantidades masivas de texto, que pueden incluir libros, artículos, páginas web, y más.

2. Tamaño del Modelo:  Los LLMs tienen miles de millones de parámetros (variables internas que ajustan su comportamiento). Por ejemplo:

   - GPT-3: 175 mil millones de parámetros.

   - GPT-4: Información específica no divulgada, pero aún más grande.

3. Adaptabilidad:  Son altamente generalistas. Pueden realizar tareas para las que no fueron explícitamente diseñados, gracias a su habilidad para generalizar el conocimiento aprendido.


¿Cómo funcionan los LLMs?

1. Base Matemática: Los LLMs son redes neuronales profundas, generalmente del tipo transformer. Este diseño fue introducido en el artículo de Google "Attention is All You Need" (2017).

2. Preentrenamiento: Aprenden patrones del lenguaje analizando secuencias de texto. Por ejemplo:

   - Entrada: "La capital de Francia es..."

   - Modelo aprende: "París."

3. Fine-tuning: En algunos casos, después del preentrenamiento, los LLMs se ajustan con datos específicos para tareas concretas, como servicio al cliente o generación de código.

4. Inferencia: Durante el uso, el modelo genera texto basado en un *prompt* (instrucción o entrada del usuario). Esto implica predecir la palabra o secuencia más probable.


Ventajas de los LLMs

- Versatilidad: Una sola arquitectura puede abordar múltiples tareas.

- Eficiencia: Automatizan tareas que antes requerían intervención humana intensiva.

- Personalización: Pueden ajustarse a contextos específicos.


Limitaciones de los LLMs

1. Costo Computacional: Entrenar y usar un LLM requiere recursos computacionales significativos.

2. Falta de Comprensión Real: Aunque generan texto coherente, no "entienden" el mundo como los humanos.

3. Sesgos: Pueden reproducir sesgos presentes en los datos con los que fueron entrenados.

4. Actualización Dinámica: No tienen conocimiento en tiempo real; los LLMs tradicionales no pueden aprender nueva información tras su entrenamiento.