Translate

miércoles, 16 de octubre de 2024

Un ejemplo sencillo de STL en c++


Hagamos un ejemplo sencillo en C++ utilizando STL, queremos calcular el promedio general de un curso. Es decir, el promedio del promedio de todos los alumnos.

Entonces tenemos a la clase Alumno: 

class Alumno

{

private:

    char * nombre;

    std::vector<int> notas;

public:

    Alumno(char * nombre);

    char *getNombre() const;

    void setNombre(char *newNombre);

    double promedio();

    void addNota(int nota);

};


Y Curso: 


class Curso

{

private:

    char * nombre;

    std::vector<Alumno> alumnos;

public:

    Curso(char * nombre);

    char *getNombre() const;

    void setNombre(char *newNombre);

    void addAlumno(Alumno a);

    double promedioGeneral();

};


No copio todo el cpp porque me va quedar un post muy largo, pero es fácil de implementar. Ahora bien, primero calculamos el promedio de los alumnos: 


double Alumno::promedio()
{
    int sum = std::reduce(this->notas.begin(),
                          this->notas.end(),
                          0);
    return sum / this->notas.size();
}


Y luego el promedio de los alumnos, para esto pasamos el vector de alumnos a un vector de promedios y luego calculamos el promedio: 

double Curso::promedioGeneral()
{
    std::vector<double> promedios;
    std::transform(this->alumnos.begin(),
                   this->alumnos.end(),
                   std::back_inserter(promedios),
            [](Alumno elem) {
                return elem.promedio(); 
            });
    double acu = std::reduce(promedios.begin(),
                             promedios.end(),
                                   0);
    return acu / promedios.size();
}

Ya sé que podria solo calcular el promedio con reduce pero hago el transform, solo para hacer más completo el ejemplo. 

Y para probarlo podemos hacer : 

using namespace std;

int main()
{
    Alumno unAlumno("Juan");
    unAlumno.addNota(65);
    unAlumno.addNota(75);
    unAlumno.addNota(85);

    Alumno otroAlumno("Pedro");
    otroAlumno.addNota(64);
    otroAlumno.addNota(56);
    otroAlumno.addNota(85);

    Curso cpp("curso c++");
    cpp.addAlumno(unAlumno);
    cpp.addAlumno(otroAlumno);

    cout << "Promedio general :" << cpp.promedioGeneral() << endl;

    return 0;
}

Y listo!! 

No hay que olvidarse importar vector y numeric:

#include <vector>
#include <numeric>

lunes, 14 de octubre de 2024

Implementaciones externas para varios destinos


import gleam/io


pub type DateTime


@external(erlang, "calendar", "local_time")

@external(javascript, "./my_package_ffi.mjs", "now")

pub fn now() -> DateTime


pub fn main() {

  io.debug(now())

}


Se pueden especificar varias implementaciones externas para la misma función, lo que permite que la función funcione tanto en Erlang como en JavaScript.

Si una función no tiene una implementación para el destino compilado actualmente, el compilador devolverá un error.

Se debe implementar funciones para todos los destinos, pero esto no siempre es posible debido a incompatibilidades en cómo funcionan la E/S y la concurrencia en Erlang y JavaScript. Con Erlang, la E/S simultánea se maneja de forma transparente por el entorno de ejecución, mientras que en JavaScript la E/S simultánea requiere el uso de promesas o devoluciones de llamadas. Si su código utiliza el estilo Erlang, normalmente no es posible implementarlo en JavaScript, mientras que si se utilizan devoluciones de llamadas, no será compatible con la mayoría del código Gleam y Erlang, ya que obliga a cualquier código que llame a la función a utilizar también devoluciones de llamadas.

Las bibliotecas que utilizan E/S simultáneas normalmente tendrán que decidir si admiten Erlang o JavaScript y documentar esto en su README.

viernes, 11 de octubre de 2024

Función map, reduce y filter en Typescript


La función map te permite transformar cada elemento de un array aplicando una función sobre ellos. El resultado es un nuevo array con los valores transformados.


const numeros = [1, 2, 3, 4, 5];

const duplicados = numeros.map((num) => num * 2);

console.log(duplicados); // Salida: [2, 4, 6, 8, 10]


filter se utiliza para eliminar elementos de un array que no cumplan una condición específica. El resultado es un nuevo array solo con los elementos que pasen esa condición.


const numeros = [1, 2, 3, 4, 5];

const pares = numeros.filter((num) => num % 2 === 0);

console.log(pares); // Salida: [2, 4]


reduce es una función poderosa que permite reducir un array a un único valor aplicando una función acumuladora a sus elementos.


const numeros = [1, 2, 3, 4, 5];

const suma = numeros.reduce((acumulador, num) => acumulador + num, 0);

console.log(suma); // Salida: 15


Este ejemplo reduce el array sumando todos los números, resultando en 15. El 0 es el valor inicial del acumulador.

Usar técnicas de programación funcional como map, filter y reduce mejora la legibilidad del código al evitar bucles explícitos y efectos secundarios. Este estilo declarativo hace que sea más fácil razonar sobre el comportamiento de tu aplicación, especialmente cuando trabajas con grandes cantidades de datos o flujos.



miércoles, 9 de octubre de 2024

Externals en Gleam


import gleam/io


// A type with no Gleam constructors

pub type DateTime


// An external function that creates an instance of the type

@external(javascript, "./my_package_ffi.mjs", "now")

pub fn now() -> DateTime


// The `now` function in `./my_package_ffi.mjs` looks like this:

// export function now() {

//   return new Date();

// }


pub fn main() {

  io.debug(now())

}


El resultado es : 

//js(Date("2024-10-05T17:29:39.958Z"))


A veces, en nuestros proyectos, queremos usar código escrito en otros lenguajes, más comúnmente Erlang y JavaScript, dependiendo del entorno de ejecución que se esté usando. Las funciones externas y los tipos externos de Gleam nos permiten importar y usar este código que no es de Gleam.

Un tipo externo es aquel que no tiene constructores. Gleam no sabe qué forma tiene ni cómo crear uno, solo sabe que existe.

Una función externa es aquella que tiene el atributo @external, que indica al compilador que use la función del módulo especificado como implementación, en lugar del código de Gleam.

El compilador no puede determinar los tipos de funciones escritas en otros lenguajes, por lo que cuando se proporciona el atributo externo, se deben proporcionar anotaciones de tipo. Gleam confía en que el tipo proporcionado sea correcto, por lo que una anotación de tipo inexacta puede generar un comportamiento inesperado y fallas en el entorno de ejecución. ¡Ten cuidado!

Las funciones externas son útiles, pero se deben usar con moderación. Es preferible escribir código de Gleam cuando sea posible.

lunes, 7 de octubre de 2024

Evolución de Pattern Matching en C#


El Pattern Matching es una poderosa característica de C# que permite realizar operaciones basadas en coincidencias de patrones. A medida que han pasado las versiones, esta funcionalidad se ha enriquecido significativamente. A continuación, se explica cómo ha evolucionado:

Type Pattern (C# 7.0)

Permite verificar y hacer un cast de un tipo directamente.


if (obj is int i)

{

    Console.WriteLine(i); // Desde C# 7.0

}


Switch con Pattern Matching (C# 7.0)

El switch puede realizar comparaciones de tipos.


switch (obj)

{

    case int i:

        Console.WriteLine(i);  // Desde C# 7.0

        break;

}


Property Pattern (C# 8.0)

Verifica propiedades de un objeto en un switch.


var person = new Person("John", 30);

var result = person switch

{

    { Name: "John", Age: 30 } => "Matched!", // Desde C# 8.0

    _ => "No Match"

};


Positional Pattern (C# 8.0)

Permite trabajar con tipos que tienen métodos `Deconstruct`.


public record Point(int X, int Y);


var point = new Point(1, 2);

string description = point switch

{

    (1, 2) => "Point at (1,2)",  // Desde C# 8.0

    _ => "Other point"

};


Logical Patterns (and, or, not) (C# 9.0)

Se pueden combinar patrones usando operadores lógicos.


int x = 5;

string result = x switch

{

    > 0 and < 10 => "Between 1 and 9",   // Desde C# 9.0

    _ => "Other"

};


Relational Pattern (C# 9.0)

Se usa para comparar valores numéricos directamente en los patrones.


int x = 20;

string result = x switch

{

    > 10 => "Greater than 10",  // Desde C# 9.0

    _ => "10 or less"

};



List Patterns (C# 11.0)

Trabaja con colecciones de una manera más directa.


int[] numbers = { 1, 2, 3 };

var result = numbers switch

{

    [1, 2, ..] => "Starts with 1, 2",  // Desde C# 11.0

    _ => "Other"

};


 Slice Patterns (C# 11.0)

Captura sublistas utilizando `..`.


int[] numbers = { 1, 2, 3, 4 };

var result = numbers switch

{

    [_, _, .. int[] rest] => $"Rest: {string.Join(", ", rest)}",  // Desde C# 11.0

    _ => "No Match"

};


Y falto hablar de las Guards. Un guard es una condición adicional que puedes usar dentro de un patrón de coincidencia para hacer una verificación más específica. Se utiliza con la palabra clave when. Veamos un ejemplo:


int number = 5;


string result = number switch

{

    int n when n > 0 => "Positive number",

    int n when n < 0 => "Negative number",

    _ => "Zero"

};


Console.WriteLine(result);  // Output: Positive number


El Pattern Matching ha evolucionado desde su introducción en C# 7.0, permitiendo escribir código más expresivo, con patrones que facilitan el trabajo con tipos, propiedades, listas y operadores lógicos. Las versiones más recientes, como C# 11.0, añaden aún más flexibilidad, como los List y Slice Patterns. ¡Con cada nueva versión, el Pattern Matching sigue siendo una de las características más poderosas del lenguaje!

sábado, 5 de octubre de 2024

Let assert de Gleam


import gleam/io


pub fn main() {

  let a = unsafely_get_first_element([123])

  io.debug(a)


  let b = unsafely_get_first_element([])

  io.debug(b)

}


pub fn unsafely_get_first_element(items: List(a)) -> a {

  // This will panic if the list is empty.

  // A regular `let` would not permit this partial pattern

  let assert [first, ..] = items

  first

}

El resultado: 

123

Error: Pattern match failed, no pattern matched the value.


let assert es la última forma de bloquear intencionalmente su programa Gleam. Es similar a la palabra clave panic en el sentido de que bloquea cuando el programa ha llegado a un punto al que nunca debería llegar.

let assert es similar a let en el sentido de que es una forma de asignar valores a las variables, pero es diferente en el sentido de que el patrón puede ser parcial. El patrón no necesita coincidir con todos los valores posibles del tipo que se está asignando.

Al igual que panic, esta función debe usarse con moderación y probablemente no debe usarse en absoluto en las bibliotecas.

viernes, 4 de octubre de 2024

Pattern Matching en TypeScript


Pattern Matching es una característica poderosa que permite comparar una estructura de datos con un patrón y ejecutar el código dependiendo de cómo coincidan. Aunque TypeScript no tiene un soporte nativo de pattern matching al estilo de lenguajes como Scala o Haskell, pero se puede simular de manera efectiva utilizando algunas características como los tipos discriminados y el refinamiento de tipos para implementar pattern matching. Estos tipos combinan un campo común discriminante que puede diferenciar uniones de tipos de forma segura.

Veamos un ejemplo:


type Shape = 

  | { kind: 'circle', radius: number }

  | { kind: 'square', sideLength: number }

  | { kind: 'rectangle', width: number, height: number };


function area(shape: Shape): number {

  switch (shape.kind) {

    case 'circle':

      return Math.PI * shape.radius ** 2;

    case 'square':

      return shape.sideLength ** 2;

    case 'rectangle':

      return shape.width * shape.height;

  }

}


const myCircle: Shape = { kind: 'circle', radius: 5 };

console.log(area(myCircle)); // 78.53981633974483


Otra forma de hacer pattern matching es mediante guard clauses, que son condiciones específicas para cada caso. Aquí tienes un ejemplo:


function printNumber(x: number | string): string {

  if (typeof x === 'number') {

    return `Es un número: ${x}`;

  } else if (typeof x === 'string') {

    return `Es una cadena de texto: ${x}`;

  } else {

    return `Valor no soportado`;

  }

}


// Uso

console.log(printNumber(42));   // Es un número: 42

console.log(printNumber('42')); // Es una cadena de texto: 42


TypeScript también permite un estilo de pattern matching mediante desestructuración de objetos y arrays.


type Person = { name: string, age: number };

type Animal = { species: string };


function describe(input: Person | Animal): string {

  if ('name' in input) {

    return `Persona: ${input.name}, Edad: ${input.age}`;

  } else {

    return `Especie: ${input.species}`;

  }

}


// Uso

const person: Person = { name: 'John', age: 30 };

const animal: Animal = { species: 'Dog' };


console.log(describe(person)); // Persona: John, Edad: 30

console.log(describe(animal)); // Especie: Dog


El uso de `switch` puede complementarse con guardias para realizar un matching más fino de patrones, filtrando por condiciones adicionales.


function classifyNumber(x: number): string {

  switch (true) {

    case x < 0:

      return 'Número negativo';

    case x === 0:

      return 'Cero';

    case x > 0:

      return 'Número positivo';

    default:

      return 'Valor desconocido';

  }

}


console.log(classifyNumber(-5));  // Número negativo

console.log(classifyNumber(0));   // Cero

console.log(classifyNumber(10));  // Número positivo


Si bien TypeScript no tiene soporte nativo para el pattern matching al nivel de otros lenguajes funcionales, podemos simularlo utilizando sus características de refinamiento de tipos, tipos discriminados, guard clauses y desestructuración.

Con estos enfoques, puedes aplicar las ideas de pattern matching de forma clara y eficiente en TypeScript. Este tipo de técnica puede mejorar la legibilidad de tu código y hacerlo más fácil de mantener.


jueves, 3 de octubre de 2024

Panic en Gleam


import gleam/io


pub fn main() {

  print_score(10)

  print_score(100_000)

  print_score(-1)

}


pub fn print_score(score: Int) {

  case score {

    score if score > 1000 -> io.println("High score!")

    score if score > 0 -> io.println("Still working on it")

    _ -> panic as "Scores should never be negative!"

  }

}


La palabra clave panic es similar a la palabra clave todo, pero se utiliza para bloquear el programa cuando este ha llegado a un punto al que nunca debería llegar.

¡Esta palabra clave casi nunca debería utilizarse! Puede ser útil en prototipos y scripts iniciales, pero su uso en una biblioteca o aplicación de producción es una señal de que el diseño podría mejorarse. Con tipos bien diseñados, el sistema de tipos se puede utilizar normalmente para hacer que estos estados no válidos sean irrepresentables.

miércoles, 2 de octubre de 2024

Covarianza, Contravarianza e Invarianza en TypeScript


En el contexto de tipos genéricos, la varianza define cómo los subtipos y supertipos de un tipo afectan las relaciones entre otros tipos.

Existen tres tipos principales de varianza:

Covarianza: Un tipo genérico mantiene la relación de subtipos que tiene el tipo con el que trabaja. Es decir, si A es un subtipo de B, entonces Caja<A> será subtipo de Caja<B>.

Contravarianza: Ocurre cuando la relación de subtipos es inversa. Si A es subtipo de B, entonces Caja<B> es subtipo de Caja<A>.

Invarianza: No existe relación entre Caja<A> y Caja<B>, incluso si A es un subtipo de B.

En TypeScript, exiten tipos que son covariantes por defecto. Esto significa que si un tipo genérico tiene un subtipo, esa relación se mantiene con el tipo genérico.

Veamos un ejemplo sencillo para entender esto mejor:


class Animal {

    nombre: string;

    constructor(nombre: string) {

        this.nombre = nombre;

    }

}


class Perro extends Animal {

    ladrar(): void {

        console.log("Guau!");

    }

}


class Gato extends Animal {

    maullar(): void {

        console.log("Miau!");

    }

}


function imprimirAnimales(animales: Animal[]): void {

    animales.forEach(animal => console.log(animal.nombre));

}


const perros: Perro[] = [new Perro("Max"), new Perro("Rex")];

imprimirAnimales(perros); // Esto es válido, ya que Perro es subtipo de Animal


En este ejemplo, Perro[] es subtipo de Animal[], por lo que la función imprimirAnimales puede recibir una lista de perros sin problema. Esto es covarianza.

Contravarianza significa que un tipo más general (supertipo) puede ser pasado donde se espera un tipo más específico (subtipo). En TypeScript, esto es común al trabajar con funciones.


class Carnivoro extends Animal {}

class Herviboro extends Animal {}


function alimentarAnimal(fn: (a: Carnivoro) => void): void {

    const leon = new Carnivoro("León");

    fn(leon);

}


function alimentarCualquierAnimal(a: Animal): void {

    console.log(`Alimentando a un ${a.nombre}`);

}


alimentarAnimal(alimentarCualquierAnimal); // Funciona gracias a la contravarianza

Aquí, la función alimentarCualquierAnimal puede ser utilizada donde se espera una función que trabaje con Carnivoro, ya que Animal es un supertipo de Carnivoro. Esto es contravarianza.

Si un tipo es invariante, no puedes intercambiar subtipos y supertipos, incluso si existe una relación de herencia entre ellos. Este comportamiento es menos común en TypeScript.


Ejemplo de invarianza:


class Caja<T> {

    contenido: T;

    constructor(contenido: T) {

        this.contenido = contenido;

    }

}


const cajaAnimal: Caja<Animal> = new Caja(new Animal("Elefante"));

const cajaPerro: Caja<Perro> = new Caja(new Perro("Max"));


// Esto genera error porque Caja<Perro> no es subtipo de Caja<Animal>

// cajaAnimal = cajaPerro; 


En este caso, Caja<Perro> no es subtipo de Caja<Animal>, aunque Perro sea subtipo de Animal. Esta es la invarianza, donde no hay compatibilidad entre tipos genéricos con diferentes parámetros de tipo.

En TypeScript, no puedes hacer que Caja<Animal> sea compatible con Caja<Perro> directamente debido a la invarianza de los tipos genéricos. Sin embargo, hay formas de aproximar este comportamiento utilizando tipos genéricos más flexibles, como lo son los tipos comodín (similares a los de Java) o utilizando el modificador readonly para hacer la relación covariante.

Se puede hacer que Caja<T> sea covariante para las lecturas si el contenido de la caja solo es accesible de forma de lectura y no de escritura. Esto se logra declarando las propiedades como `readonly`.


class Caja<out T> {

    readonly contenido: T;

    constructor(contenido: T) {

        this.contenido = contenido;

    }

}


const cajaAnimal: Caja<Animal> = new Caja(new Animal("Elefante"));

const cajaPerro: Caja<Perro> = new Caja(new Perro("Max"));

// Como la propiedad es de solo lectura, es covariante

const otraCajaAnimal: Caja<Animal> = cajaPerro; // Funciona


En este caso, al usar readonly, puedes asignar una Caja<Perro> a una Caja<Animal> porque las cajas son covariantes en la lectura. No obstante, ya no podrías modificar el contenido de la caja.

Otra opción es usar la palabra clave extends para indicar que puedes trabajar con cualquier subtipo de Animal.


class Caja<T extends Animal> {

    contenido: T;

    constructor(contenido: T) {

        this.contenido = contenido;

    }

}


function procesarCajaAnimal(caja: Caja<Animal>) {

    console.log(`Animal: ${caja.contenido.nombre}`);

}


const cajaPerro: Caja<Perro> = new Caja(new Perro("Max"));

procesarCajaAnimal(cajaPerro); // Funciona


Aquí estamos diciendo que Caja<T> puede aceptar cualquier tipo que extienda de Animal. Esto permite que una Caja<Perro> sea pasada a una función que espera una Caja<Animal>.

DIPLOMATURA INTRODUCCIÓN A LA PROGRAMACIÓN EN PYTHON


La Diplomatura de Introducción a la Programación con Python es una propuesta diseñada para dar respuesta a una demanda específica de diferentes entornos públicos y privados, así como para proporcionar a los y las participantes una sólida base en programación utilizando el lenguaje Python. Con un enfoque accesible y versátil, la diplomatura busca democratizar el conocimiento tecnológico, preparando a quienes la realicen para enfrentar los desafíos digitales de la actualidad.

La diplomatura consta de 7 módulos con una duración horaria total de 220 horas reloj. Los y las participantes adquirirán habilidades prácticas en programación, aprenderán a desarrollar aplicaciones web simples, trabajarán con bases de datos y se familiarizarán con herramientas esenciales. El enfoque práctico del trayecto formativo se refuerza mediante proyectos reales, permitiendo a los y las estudiantes aplicar de inmediato sus conocimientos en escenarios del mundo real.


Dejo link: https://fcyt.uader.edu.ar/diplomaturapython/

sábado, 28 de septiembre de 2024

Clases Genéricas en TypeScript


Las clases genéricas en TypeScript nos permiten escribir código flexible y reutilizable. En lugar de definir clases específicas para cada tipo de dato, podemos crear clases genéricas que trabajen con múltiples tipos, manteniendo la seguridad de tipos que ofrece TypeScript.

Una clase genérica es aquella que acepta uno o más parámetros de tipo. Estos parámetros de tipo funcionan como marcadores de posición que representan un tipo de dato específico en el momento de la instanciación de la clase.

Veamos un ejemplo: 


class Caja<T> {

    contenido: T;


    constructor(contenido: T) {

        this.contenido = contenido;

    }


    obtenerContenido(): T {

        return this.contenido;

    }

}



En este ejemplo, T es un parámetro de tipo que se utiliza en la clase Caja. No sabemos qué tipo de dato es T hasta que se instancie la clase con un tipo específico.

Puedes instanciar la clase `Caja` con cualquier tipo de dato:


const cajaDeNumero = new Caja<number>(123);

console.log(cajaDeNumero.obtenerContenido()); // 123

const cajaDeTexto = new Caja<string>('Hola');

console.log(cajaDeTexto.obtenerContenido()); // Hola


El tipo `T` se reemplaza con el tipo proporcionado (`number` o `string`), manteniendo el control de tipos y evitando errores durante la compilación.

También es posible utilizar múltiples parámetros de tipo en una clase genérica. Por ejemplo:


class Par<K, V> {

    clave: K;

    valor: V;


    constructor(clave: K, valor: V) {

        this.clave = clave;

        this.valor = valor;

    }


    obtenerClave(): K {

        return this.clave;

    }


    obtenerValor(): V {

        return this.valor;

    }

}


const par = new Par<string, number>('edad', 30);

console.log(par.obtenerClave()); // 'edad'

console.log(par.obtenerValor()); // 30


En este caso, `Par` es una clase genérica que acepta dos parámetros de tipo: `K` para la clave y `V` para el valor. Luego, se instanció con `string` como clave y `number` como valor.

A veces queremos limitar los tipos que un parámetro genérico puede aceptar. Esto se hace usando la palabra clave `extends` para aplicar una restricción al parámetro de tipo.


class LimitarCaja<T extends number | string> {

    contenido: T;


    constructor(contenido: T) {

        this.contenido = contenido;

    }


    mostrarContenido(): void {

        console.log(`Contenido: ${this.contenido}`);

    }

}


const cajaTexto = new LimitarCaja('Hola');

cajaTexto.mostrarContenido(); // Contenido: Hola


const cajaNumero = new LimitarCaja(123);

cajaNumero.mostrarContenido(); // Contenido: 123


Aquí, la clase LimitarCaja solo acepta tipos que sean number o string, lo que añade una restricción al tipo T.

Como ventaja de las clases genericas podemos nombrar: 

  • Reutilización del código: Puedes usar la misma clase para diferentes tipos sin necesidad de duplicar código.
  • Seguridad de tipos: TypeScript asegura que se utilicen los tipos correctos, evitando errores en tiempo de ejecución.
  • Flexibilidad: Permiten que el código sea más flexible, ya que puedes trabajar con cualquier tipo sin perder el control del sistema de tipos.

Las clases genéricas en TypeScript son una herramienta poderosa para crear código flexible y reutilizable. Al permitir que las clases trabajen con múltiples tipos, puedes crear soluciones que se adapten a diferentes escenarios sin sacrificar la seguridad de tipos que hace que TypeScript sea tan útil.



viernes, 27 de septiembre de 2024

ToDo de Gleam


pub fn main() {

  todo as "I haven't written this code yet!"

}


pub fn todo_without_reason() {

  todo

}

warning: Todo found

  ┌─ /src/main.gleam:6:3

  │

6 │   todo

  │   ^^^^ This code is incomplete


This code will crash if it is run. Be sure to finish it before

running your program.


La palabra clave todo se utiliza para especificar que algún código aún no se ha implementado.

En el todo podemos especificar una descripción, aunque es posible que desee incluir el mensaje si tiene más de un bloque de código marcado como todo en su código.

Cuando se utiliza, el compilador de Gleam imprimirá una advertencia para recordarle que el código no está terminado y, si se ejecuta el código, el programa se bloqueará con el mensaje indicado.

miércoles, 25 de septiembre de 2024

Apache Geode: Almacenamiento de Datos Distribuido en Tiempo Real


En el mundo actual, donde las aplicaciones demandan respuestas inmediatas y alta disponibilidad de datos, es crucial contar con herramientas que permitan gestionar datos en tiempo real de manera distribuida. Apache Geode es una de esas soluciones que permiten construir aplicaciones escalables y altamente disponibles.

Apache Geode es un sistema de almacenamiento de datos en memoria distribuido que ofrece capacidades de procesamiento y almacenamiento en tiempo real. Originalmente desarrollado por GemStone bajo el nombre de GemFire, pasó a ser un proyecto de código abierto bajo el paraguas de la Apache Software Foundation. 

Apache Geode se caracteriza por su capacidad para almacenar datos en memoria distribuidos entre varios nodos, permitiendo así un acceso rápido y eficiente a grandes volúmenes de datos. Ofrece baja latencia, alta disponibilidad, y consistencia, lo que lo convierte en una opción ideal para aplicaciones críticas que requieren acceso en tiempo real a los datos.

Apache Geode distribuye los datos entre múltiples nodos (o servidores), formando un clúster donde cada nodo puede almacenar una parte de los datos. De esta forma, el sistema es capaz de escalar horizontalmente a medida que aumenta la demanda. Además, Geode puede replicar los datos entre los nodos para garantizar redundancia y alta disponibilidad.

La arquitectura de Apache Geode permite particionar y replicar datos de manera eficiente. Esto significa que cada partición de datos se almacena en un nodo del clúster, y estas particiones pueden replicarse en otros nodos para evitar pérdida de información en caso de fallos.

Además, Geode ofrece consistencia fuerte, lo que significa que los datos son siempre consistentes entre las réplicas, lo cual es fundamental en entornos de alta disponibilidad.

Características Principales de Apache Geode:

  1. Almacenamiento en Memoria: Apache Geode utiliza la memoria principal de los servidores para almacenar los datos, lo que reduce drásticamente la latencia de acceso en comparación con bases de datos tradicionales basadas en disco.
  2. Distribución y Replicación de Datos: Los datos en Geode se distribuyen entre varios nodos y pueden replicarse para garantizar redundancia y alta disponibilidad.
  3. Alta Disponibilidad y Tolerancia a Fallos: Al replicar los datos en diferentes nodos del clúster, Geode garantiza que los datos estarán disponibles incluso si uno o varios nodos fallan.
  4. Consistencia: Apache Geode asegura consistencia fuerte, es decir, cualquier cambio en los datos es inmediatamente visible en todos los nodos que almacenan copias del mismo dato.
  5. Procesamiento en Tiempo Real: Permite realizar consultas y operaciones sobre los datos en tiempo real, manteniendo la latencia baja incluso en sistemas con altos volúmenes de transacciones.
  6. Soporte para APIs de Java y Spring: Geode está profundamente integrado con Java y tiene un fuerte soporte para el ecosistema Spring, lo que facilita su integración en aplicaciones Java empresariales.
  7. Persistencia: Aunque su principal almacenamiento es en memoria, Geode permite configurar persistencia en disco para asegurar que los datos no se pierdan tras un reinicio o fallo catastrófico.

Y donde podemos utilizar Geode: 

  1. Aplicaciones Financieras: En sistemas de trading y banca, donde la baja latencia y la consistencia de datos son cruciales, Geode se utiliza para garantizar acceso rápido a los datos en tiempo real.
  2. eCommerce: Plataformas de comercio electrónico, donde es necesario manejar grandes cantidades de usuarios concurrentes y transacciones, pueden beneficiarse de la capacidad de escalado y alta disponibilidad de Geode.
  3. Sistemas de Telecomunicaciones: Las redes de telecomunicaciones requieren acceso constante a la información del usuario y deben procesar grandes volúmenes de datos en tiempo real, algo que Apache Geode maneja eficientemente.
  4. Monitorización en Tiempo Real: Para sistemas de monitoreo y análisis en tiempo real, Geode permite el procesamiento y la toma de decisiones rápidas basadas en datos en memoria, sin la necesidad de acceder a discos lentos.

Cuando comparamos a Apache Geode con otras soluciones de almacenamiento en memoria como Redis o Hazelcast, la diferencia radica en el soporte más amplio de Apache Geode para modelos de datos más complejos y la integración nativa con Spring, lo que facilita su adopción en entornos Java empresariales.

Por otro lado, en comparación con bases de datos tradicionales como MySQL o PostgreSQL, Geode ofrece una arquitectura distribuida en memoria, lo que reduce significativamente la latencia de acceso y permite una mayor escalabilidad.

Apache Geode es una herramienta poderosa para desarrollar aplicaciones críticas que requieren almacenamiento distribuido en memoria y acceso en tiempo real a los datos. Su integración con tecnologías como Java y Spring, junto con su capacidad de escalabilidad y alta disponibilidad, lo convierten en una opción excelente para sectores como finanzas, telecomunicaciones, y comercio electrónico.

Dejo link; https://geode.apache.org/

domingo, 22 de septiembre de 2024

Use de Gleam parte 2


La expresión use es una sintaxis simplificada para una llamada a una función normal y una función anónima.


Este código:

use a, b <- my_function

next(a)

next(b)


Es igual que este código:


my_function(fn(a, b) {

  next(a)

  next(b)

})


Para garantizar que la expresión use funcione y sea lo más comprensible posible, lo ideal es que el lado derecho sea una llamada de función en lugar de una secuencia de comandos u otra expresión, que suele ser más difícil de leer.

use es una expresión como todo lo demás en Gleam, por lo que se puede colocar dentro de bloques.


viernes, 20 de septiembre de 2024

Programación Reactiva con Spring


La programación reactiva es un paradigma orientado a manejar flujos de datos de manera asíncrona, lo cual resulta ideal para aplicaciones con alta carga de tráfico, como sistemas de microservicios. Con Spring, la programación reactiva se facilita mediante el módulo Spring WebFlux.

Spring WebFlux es el módulo reactivo de Spring que permite construir aplicaciones no bloqueantes y asíncronas. Está basado en el patrón Reactor, que sigue el estándar de Reactive Streams y utiliza Mono y Flux como las abstracciones principales para manejar uno o varios elementos, respectivamente.

  • Mono: Representa 0 o 1 elemento.
  • Flux: Representa 0 o N elementos.
  • Backpressure: Mecanismo para controlar la velocidad de emisión de los eventos.

Primero, crea un proyecto de Spring Boot en Spring Initializr. Asegúrate de agregar las dependencias de Spring Reactive Web.


<dependency>

    <groupId>org.springframework.boot</groupId>

    <artifactId>spring-boot-starter-webflux</artifactId>

</dependency>


A continuación, implementamos un controlador que responde a peticiones HTTP de manera reactiva usando `Flux` y `Mono`.


import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RestController;

import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;


import java.time.Duration;


@RestController

public class ReactiveController {


    // Endpoint que devuelve un solo valor (Mono)

    @GetMapping("/mono/{id}")

    public Mono<String> getMono(@PathVariable String id) {

        return Mono.just("Valor recibido: " + id);

    }


    // Endpoint que devuelve un flujo continuo de datos (Flux)

    @GetMapping("/flux")

    public Flux<Integer> getFlux() {

        return Flux.range(1, 10)

                   .delayElements(Duration.ofSeconds(1));

    }

}


Una vez que hayas implementado el controlador, ejecuta la aplicación de Spring Boot. Puedes acceder a los endpoints:

  • /mono/{id}: Devuelve un único valor. Ejemplo: http://localhost:8080/mono/5
  • /flux: Devuelve un flujo de datos continuo que se emite cada segundo. Ejemplo: http://localhost:8080/flux
Como ventajas podemos ver: 
  • Eficiencia y Escalabilidad: Ideal para manejar aplicaciones que requieren alta concurrencia y asíncronas.
  • Control del Flujo: Con Reactive Streams puedes controlar el ritmo de procesamiento y evitar la sobrecarga del sistema.
  • Menos Bloqueo: No hay hilos bloqueados mientras se esperan respuestas, lo que mejora el rendimiento en sistemas de alta demanda.