Translate

Mostrando las entradas para la consulta go ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas
Mostrando las entradas para la consulta go ordenadas por fecha. Ordenar por relevancia Mostrar todas las entradas

martes, 22 de octubre de 2024

Borgo, lenguaje de programación que compila a Go.


Borgo es un lenguaje de programación relativamente nuevo que está diseñado para ser versátil y eficiente en varios entornos de desarrollo. Aunque aún está en sus primeras etapas, promete ofrecer un equilibrio entre alto rendimiento y facilidad de uso, haciendo énfasis en la simplicidad y la expresividad del código.

  1. Simplicidad y Legibilidad: Uno de los pilares de Borgo es la simplicidad en su sintaxis. Se enfoca en evitar la verbosidad innecesaria, permitiendo que los desarrolladores escriban código más limpio y comprensible.
  2. Eficiencia y Rendimiento: Borgo está optimizado para ejecutar código de manera eficiente, lo que lo hace ideal para aplicaciones de alto rendimiento. Su compilador se enfoca en generar binarios pequeños y rápidos.
  3. Soporte para Programación Funcional y Orientada a Objetos: Al igual que lenguajes como Scala y Kotlin, Borgo combina paradigmas funcionales y orientados a objetos, lo que permite a los desarrolladores elegir el enfoque más adecuado para su proyecto.
  4. Concurrencia Nativa: Al ser un lenguaje moderno, Borgo incluye soporte para concurrencia y paralelismo de manera nativa, facilitando la creación de aplicaciones altamente escalables sin tener que recurrir a bibliotecas externas.
  5. Ecosistema Modular: Borgo apuesta por un ecosistema modular, donde los desarrolladores pueden añadir funcionalidad mediante paquetes externos, similar a lo que ofrecen lenguajes como Python con `pip` o Node.js con `npm`.

Relindas las características pero veamos un poco de código: 


use fmt

enum NetworkState<T> {

    Loading,

    Failed(int),

    Success(T),

}


struct Response {

    title: string,

    duration: int,

}


fn main() {

    let res = Response {

        title: "Hello world",

        duration: 0,

    }


    let state = NetworkState.Success(res)


    let msg = match state {

        NetworkState.Loading => "still loading",

        NetworkState.Failed(code) => fmt.Sprintf("Got error code: %d", code),

        NetworkState.Success(res) => res.title,

    }


    fmt.Println(msg)

}


Como ven, es como que go y rust hubieran tenido un hijo... 

Borgo es un lenguaje emergente con mucho potencial, diseñado para combinar simplicidad con eficiencia. Aunque aún no es ampliamente adoptado, sus características prometen hacer que valga la pena seguirlo de cerca, especialmente para aquellos desarrolladores que buscan una alternativa moderna a lenguajes tradicionales. 

Dejo link: https://borgo-lang.github.io/

jueves, 11 de julio de 2024

Como podemos manejar las referencias nulas?


El error más frecuente en Java es NullPointerException y me imagino que en otros lenguajes alguno similar...  Para abordar esto, se han introducido estructuras y operadores que ayudan a manejar la ausencia de valores de manera más segura y explícita. 

Por ejemplo en Java se introdujo la clase `Optional` en la versión 8 para manejar valores potencialmente nulos de una manera más segura. `Optional` es un contenedor que puede o no contener un valor no nulo.

import java.util.Optional;


public class OptionalExample {

    public static void main(String[] args) {

        Optional<String> optional = Optional.of("Hello, World!");

        

        // Verificar si hay un valor presente

        if (optional.isPresent()) {

            System.out.println(optional.get());

        }

        

        // Uso del método ifPresent

        optional.ifPresent(System.out::println);

        

        // Proveer un valor predeterminado

        String value = optional.orElse("Default Value");

        System.out.println(value);

        

        // Proveer un valor predeterminado usando un Supplier

        value = optional.orElseGet(() -> "Default Value from Supplier");

        System.out.println(value);

    }

}


Scala utiliza la clase `Option` para representar un valor opcional. `Option` tiene dos subclases: `Some` y `None`, lo que proporciona una forma elegante y funcional de manejar valores que pueden estar ausentes. Esta idea es similar a la monada `Maybe` en Haskell.


object OptionExample extends App {

  val someValue: Option[String] = Some("Hello, World!")

  val noneValue: Option[String] = None


  // Uso de getOrElse

  println(someValue.getOrElse("Default Value"))

  println(noneValue.getOrElse("Default Value"))


  // Uso del patrón de coincidencia (Pattern Matching)

  someValue match {

    case Some(value) => println(value)

    case None => println("No value")

  }


  noneValue match {

    case Some(value) => println(value)

    case None => println("No value")

  }

}


Scala "copio" esta forma de Haskell. Haskell utiliza el tipo de datos `Maybe` para manejar valores opcionales `Maybe` puede ser `Just` un valor o `Nothing`.


main :: IO ()

main = do

    let someValue = Just "Hello, World!"

    let noneValue = Nothing


    -- Uso de fromMaybe

    putStrLn (fromMaybe "Default Value" someValue)

    putStrLn (fromMaybe "Default Value" noneValue)


    -- Uso del patrón de coincidencia (Pattern Matching)

    case someValue of

        Just value -> putStrLn value

        Nothing -> putStrLn "No value"


    case noneValue of

        Just value -> putStrLn value

        Nothing -> putStrLn "No value"


Kotlin es similar a Scala en muchos aspectos pero no en este. Kotlin introduce el operador `?` para facilitar la gestión de valores nulos. Este operador se utiliza para declarar tipos de datos que pueden ser nulos y para realizar operaciones seguras contra nulos.


fun main() {

    var nullableString: String? = "Hello, World!"


    // Uso del operador ?. para llamadas seguras

    println(nullableString?.length)


    // Uso del operador ?: para proporcionar un valor predeterminado

    val length = nullableString?.length ?: 0

    println(length)


    nullableString = null


    // Uso de let para ejecutar código solo si el valor no es nulo

    nullableString?.let {

        println(it)

    }

}


C# ha incluido varias características para manejar valores nulos, como el operador `?`, que facilita el manejo seguro de tipos que pueden ser nulos.


using System;


class Program

{

    static void Main()

    {

        string? nullableString = "Hello, World!";

        

        // Uso del operador ?. para llamadas seguras

        Console.WriteLine(nullableString?.Length);


        // Uso del operador ?? para proporcionar un valor predeterminado

        int length = nullableString?.Length ?? 0;

        Console.WriteLine(length);


        nullableString = null;


        // Uso de pattern matching para verificar nulos

        if (nullableString is string nonNullString)

        {

            Console.WriteLine(nonNullString);

        }

    }

}


Rust maneja la ausencia de valores y los errores de una manera robusta utilizando los tipos `Option` y `Result`. `Option` puede ser `Some` o `None`, mientras que `Result` puede ser `Ok` o `Err`.


fn main() {

    let some_value: Option<String> = Some("Hello, World!".to_string());

    let none_value: Option<String> = None;


    // Uso de unwrap_or

    println!("{}", some_value.unwrap_or("Default Value".to_string()));

    println!("{}", none_value.unwrap_or("Default Value".to_string()));


    // Uso del patrón de coincidencia (Pattern Matching)

    match some_value {

        Some(value) => println!("{}", value),

        None => println!("No value"),

    }


    match none_value {

        Some(value) => println!("{}", value),

        None => println!("No value"),

    }

}


Go no tiene un tipo de datos específico para manejar valores opcionales, pero utiliza la convención de retornar múltiples valores, incluyendo un valor y un `error`. Que la verdad no me gusta, te pasas preguntando todo el tiempo si hay error o si los valores son nulos. 


package main


import (

    "errors"

    "fmt"

)


func getValue() (string, error) {

    return "Hello, World!", nil

}


func getNullableValue() (string, error) {

    return "", errors.New("no value")

}


func main() {

    value, err := getValue()

    if err != nil {

        fmt.Println("Error:", err)

    } else {

        fmt.Println("Value:", value)

    }


    nullableValue, err := getNullableValue()

    if err != nil {

        fmt.Println("Error:", err)

    } else {

        fmt.Println("Value:", nullableValue)

    }

}


Python utiliza la palabra clave `None` para representar la ausencia de valor. Aunque no tiene una estructura específica como `Optional`, los desarrolladores pueden utilizar condicionales y manejo de excepciones.


def get_value():

    return "Hello, World!"


def get_nullable_value():

    return None


value = get_value()

nullable_value = get_nullable_value()


if value is not None:

    print(value)

else:

    print("Default Value")


if nullable_value is not None:

    print(nullable_value)

else:

    print("Default Value")


Ruby utiliza `nil` para representar la ausencia de valor. Al igual que en Python, no tiene una estructura específica para valores opcionales, pero proporciona métodos para manejar `nil`.


value = "Hello, World!"

nullable_value = nil


# Uso del operador ||

puts value || "Default Value"

puts nullable_value || "Default Value"


# Uso de condicionales

puts value.nil? ? "Default Value" : value

puts nullable_value.nil? ? "Default Value" : nullable_value


C++ utiliza punteros inteligentes (`smart pointers`) para gestionar la memoria y prevenir errores relacionados con punteros nulos. Los punteros inteligentes, como `std::unique_ptr` y `std::shared_ptr`, se encargan de la gestión automática de la memoria.


#include <iostream>

#include <memory>


int main() {

    std::unique_ptr<int> uniquePtr(new int(42));

    if (uniquePtr) {

        std::cout << *uniquePtr << std::endl;

    }


    std::shared_ptr<int> sharedPtr = std::make_shared<int>(42);

    if (sharedPtr) {

        std::cout << *sharedPtr << std::endl;

    }


    // Uso de weak_ptr para evitar ciclos de referencia

    std::weak_ptr<int> weakPtr = sharedPtr;

    if (auto lockedPtr = weakPtr.lock()) {

        std::cout << *lockedPtr << std::endl;

    }


    return 0;

}


TypeScript, un superconjunto de JavaScript, permite tipos opcionales y tiene un soporte robusto para manejar valores `null` y `undefined`.


let nullableString: string | null = "Hello, World!";


// Uso del operador ? para llamadas seguras

console.log(nullableString?.length ?? 0);


// Uso de if para asegurar valores no nulos

if (nullableString !== null) {

    console.log(nullableString);

}


TypeScript utiliza tipos opcionales para manejar valores que pueden ser `null` o `undefined`, proporcionando un enfoque seguro para evitar errores comunes relacionados con valores nulos. El operador `?.` permite realizar llamadas seguras, y el operador `??` proporciona valores predeterminados en caso de valores `null` o `undefined`.

En fin, aunque la gestión de valores nulos varía entre lenguajes, la idea subyacente es la misma: proporcionar mecanismos más seguros y expresivos para manejar la ausencia de valores. Ya sea mediante clases contenedoras como `Optional` en Java y `Option` en Scala, tipos de datos como `Maybe` en Haskell, operadores específicos como `?` en Kotlin y C#, punteros inteligentes en C++, o enfoques específicos en Rust, Go, Python y Ruby, estos enfoques ayudan a reducir los errores y a escribir un código más robusto y mantenible.


lunes, 20 de mayo de 2024

Lenguajes utilizados en los proyectos apache

Tal vez hace mucho que Apache publico este gráfico pero yo recién lo veo : 



Como se puede ver Java es el lenguaje más utilizado por los proyectos de apache, seguido de python, c++, c, javascript, scala, C#, go, perl, etc ... 




jueves, 16 de mayo de 2024

Hacer un servicio con gRPC y go-zero


Hagamos un hola mundo con go-zero utilizando gRPC. Para empezar vamos a hacer el archivo .proto : 

syntax = "proto3";


package hello;


option go_package = "./hello";


message Request {

}


message Response {

  string msg = 1;

}


service Hello {

  rpc Ping(Request) returns(Response);

}


$ goctl rpc protoc hello.proto --go_out=server --go-grpc_out=server --zrpc_out=server

Done.

luego hacemos : 

cd server

go mod tidy 


Completamos el archivo server/internal/logic/pinglogic.go


func (l *PingLogic) Ping(in *hello.Request) (*hello.Response, error) {

return &hello.Response{ Msg: "pong" }, nil

}


y luego en el archivo server/etc/hello.yaml agregamos que estamos trabajando en modo dev: 


Name: hello.rpc
ListenOn: 0.0.0.0:8080
Mode: dev

y por ultimo corremos el proyecto: 

go run hello.go



martes, 30 de abril de 2024

Queres probar código y no queres instalar nada? paiza.io


Queres probar código y no queres instalar nada? 

Bueno podes utilizar paiza. Que es una pagina donde podemos correr código en diferentes lenguajes: 

Bash, C, C#, C++, Clojure, Cobol, CoffeeScript, D, Elixir, Erlang, F#, Go, Haskell, Java, JavaScript, Kotlin, MySQL, Nadesiko, Objective-C, Perl, PHP, Python2, Python3, R, Ruby, Rust, Scala, Scheme, Swift, TypeScript, VB


Dejo link: https://paiza.io/

miércoles, 6 de marzo de 2024

Primera API con Go-zero


Después de completar la instalación de goctl, podemos crear un servicio HTTP mínimo para obtener una descripción general del servicio API go-zero de goctl.


# Create workspaces and enter the directory

$ mkdir -p ~/workspace/api && cd ~/workspace/api

# Execute instructions generated demo service

$ goctl api new demo

Done.


Después de ejecutar la instrucción, se generará un directorio de demostración en el directorio actual que contiene un servicio HTTP minimizado, verificaremos la estructura del directorio del servicio.


$ cd ~/workspace/api/demo

$ ls

demo.api demo.go  etc      go.mod   internal

$ tree

.

├── demo.api

├── demo.go

├── etc

│   └── demo-api.yaml

├── go.mod

└── internal

    ├── config

    │   └── config.go

    ├── handler

    │   ├── demohandler.go

    │   └── routes.go

    ├── logic

    │   └── demologic.go

    ├── svc

    │   └── servicecontext.go

    └── types

        └── types.go


Después de completar la generación del código anterior, podemos encontrar los archivos ~/workspace/api/demo/internal/logic/demologic.go, y podemos completar el códigos entre las líneas 27 y 28:

resp = new(types.Response)

resp.Message = req.Name


Después de escribir el código anterior, podemos iniciar el servicio con las siguientes instrucciones:


# Enter service directory

$ cd ~/workspace/api/demo

# to organize dependencies

$ go mod tidy

# Run go program

$ go run demo.go


Cuando vea el siguiente resultado "Starting server at 0.0.0.0.0:888.." indica que el servicio se ha iniciado correctamente, entonces visitamos el servicio HTTP.


$ curl --request GET 'http://127.0.0.0.1:8888/from/me'


Cuando vea el resultado en la terminal {"message":"me"} en nombre de su servicio se inició con éxito.


Y listo!!

Dejo link: https://go-zero.dev/en/docs/tasks/cli/api-demo


domingo, 25 de febrero de 2024

Instalando go zero

 


Ya hemos hablado de zero el framework de go para hacer microservicios. Ahora vamos a bajar las herramientas para trabajar con él. 

Primero, tenemos que tener go instalado. Yo tengo la versión 1.22.0

$ go version

go version go1.22.0 linux/amd64


Después de la versión 1.11, se recomienda que el valor GO111MODULE se establezca en on para evitar errores innecesarios.

$ go env -w GO111MODULE=on
$ go env -w GOPROXY=https://goproxy.cn,direct

$ go env GO111MODULE
on
$ go env GOPROXY
https://goproxy.cn,direct

goctl es una herramienta incorporada de go-zero que es importante para aumentar la eficiencia del desarrollo, generar código, documentos, implementar k8s yaml, dockerfile, etc.

$ go install github.com/zeromicro/go-zero/tools/goctl@latest
go: downloading github.com/gookit/color v1.5.4
go: downloading github.com/withfig/autocomplete-tools/integrations/cobra v1.2.1
go: downloading github.com/spf13/cobra v1.8.0
...

$ goctl -version
goctl version 1.6.2 linux/amd64

Ahora tenemos que installar docker. Yo ya tengo docker instalado por lo tanto siguo: 

$ sudo docker pull kevinwan/goctl
$ sudo docker run --rm -it -v `pwd`:/app kevinwan/goctl goctl --help

Y si todo anda bien hacemos : 

$ sudo docker run --rm -it -v `pwd`:/app kevinwan/goctl:latest goctl --version
goctl version 1.3.5 linux/amd64

protoc es una herramienta para generar código basado en archivos proto, este genern código en múltiples lenguajes como C++, Java, Python, Go, PHP, etc. para nuestros servicios gRPC. Lo tenemos que instalar, en mi caso yo lo tenia instalado y lo sé porque hice : 

$ goctl env check --install --verbose --force
[goctl-env]: preparing to check env

[goctl-env]: looking up "protoc"
[goctl-env]: "protoc" is installed

[goctl-env]: looking up "protoc-gen-go"
[goctl-env]: "protoc-gen-go" is installed

[goctl-env]: looking up "protoc-gen-go-grpc"
[goctl-env]: "protoc-gen-go-grpc" is installed

[goctl-env]: congratulations! your goctl environment is ready!

Y ahora por fin, vamos a crear nuestro proyecto go-zero!! 

Creamos el proyecto: 
$ mkdir myapp && cd myapp
$ go mod init myapp
$ go get github.com/zeromicro/go-zero@latest
go: added github.com/zeromicro/go-zero v1.6.2


Y Listo!! 


sábado, 3 de febrero de 2024

Printing en Go


La impresión formateada en Go utiliza un estilo similar a la familia printf de C, pero es más rica y más general. Las funciones se encuentran en el paquete fmt y tienen nombres en mayúscula: fmt.Printf, fmt.Fprintf, fmt.Sprintf, etc. Las funciones de cadena (Sprintf, etc.) devuelven una cadena en lugar de enviar la cadena a un buffer determinado.

No es necesario proporcionar un formato. Para cada uno de Printf, Fprintf y Sprintf hay otro par de funciones, por ejemplo Print y Println. Estas funciones no toman una cadena de formato sino que generan un formato predeterminado para cada argumento. Las versiones Println también insertan un espacio en blanco entre los argumentos y agregan una nueva línea a la salida, mientras que las versiones Print agregan espacios en blanco solo si el operando en ninguno de los lados es una cadena. En este ejemplo, cada línea produce el mismo resultado.


fmt.Printf("Hello %d\n", 23)

fmt.Fprint(os.Stdout, "Hello ", 23, "\n")

fmt.Println("Hello", 23)

fmt.Println(fmt.Sprint("Hello ", 23))


Las funciones de impresión formateadas fmt.Fprint y las demás toman como primer argumento cualquier objeto que implemente la interfaz io.Writer; por ejemplo os.Stdout y os.Stderr.

Aquí las cosas empiezan a diferir de C. Primero, los formatos numéricos como %d no aceptan indicadores de signo o tamaño; en cambio, las rutinas de impresión utilizan el tipo de argumento para decidir estas propiedades.


var x uint64 = 1<<64 - 1

fmt.Printf("%d %x; %d %x\n", x, x, int64(x), int64(x))


Esto imprime: 


18446744073709551615 ffffffffffffffff; -1 -1


Si solo desea la conversión predeterminada, como decimal para números enteros, puede usar el formato general %v (para “valor”); el resultado es exactamente lo que producirían Print y Println. Además, ese formato puede imprimir cualquier valor, incluso matrices, sectores, estructuras y mapas. Aquí hay una declaración impresa para el mapa de zona horaria.


fmt.Printf("%v\n", timeZone)  // or just fmt.Println(timeZone)


lo que da salida:


map[CST:-21600 EST:-18000 MST:-25200 PST:-28800 UTC:0]


Para los mapas, Printf y las demás clasifican la salida lexicográficamente por clave.


Al imprimir una estructura, el formato modificado %+v anota los campos de la estructura con sus nombres y, para cualquier valor, el formato alternativo %#v imprime el valor en la sintaxis Go completa.


type T struct {

    a int

    b float64

    c string

}

t := &T{ 7, -2.35, "abc\tdef" }

fmt.Printf("%v\n", t)

fmt.Printf("%+v\n", t)

fmt.Printf("%#v\n", t)

fmt.Printf("%#v\n", timeZone)


imprime : 



&{7 -2.35 abc   def}

&{a:7 b:-2.35 c:abc     def}

&main.T{a:7, b:-2.35, c:"abc\tdef"}

map[string]int{"CST":-21600, "EST":-18000, "MST":-25200, "PST":-28800, "UTC":0}


(Tenga en cuenta los símbolos). Ese formato de cadena entre comillas también está disponible a través de %q cuando se aplica a un valor de tipo cadena o []byte. El formato alternativo %#q utilizará comillas inversas si es posible. (El formato %q también se aplica a números enteros y runas, lo que produce una constante rúnica entre comillas simples). Además, %x funciona en cadenas, matrices de bytes y porciones de bytes, así como en números enteros, generando una cadena hexadecimal larga y con un espacio. en el formato (% x) pone espacios entre los bytes.


Otro formato útil es %T, que imprime el tipo de un valor.


fmt.Printf("%T\n", timeZone)


imprime: 


map[string]int


Si desea controlar el formato predeterminado para un tipo personalizado, todo lo que se requiere es definir un método con la cadena de firma String() en el tipo. Para nuestro tipo T simple, podría verse así.


func (t *T) String() string {

    return fmt.Sprintf("%d/%g/%q", t.a, t.b, t.c)

}

fmt.Printf("%v\n", t)


para imprimir en el formato


7/-2.35/"abc\tdef"


(Si necesita imprimir valores de tipo T así como punteros a T, el receptor de String debe ser de tipo valor; este ejemplo usó un puntero porque es más eficiente e idiomático para tipos de estructuras).

Nuestro método String puede llamar a Sprintf porque las rutinas de impresión son completamente reentrantes y se pueden empaquetar de esta manera. Sin embargo, hay un detalle importante que debe comprender acerca de este enfoque: no construya un método String llamando a Sprintf de una manera que se repetirá en su método String indefinidamente. Esto puede suceder si la llamada de Sprintf intenta imprimir el receptor directamente como una cadena, lo que a su vez invocará el método nuevamente. Es un error común y fácil de cometer, como muestra este ejemplo.


type MyString string


func (m MyString) String() string {

    return fmt.Sprintf("MyString=%s", m) // Error: will recur forever.

}


También es fácil de solucionar: convierta el argumento al tipo de cadena básica, que no tiene el método.


type MyString string

func (m MyString) String() string {

    return fmt.Sprintf("MyString=%s", string(m)) // OK: note conversion.

}


Otra técnica de impresión consiste en pasar los argumentos de una rutina de impresión directamente a otra rutina similar. La firma de Printf usa el tipo ...interfaz{} como argumento final para especificar que un número arbitrario de parámetros (de tipo arbitrario) puede aparecer después del formato.


func Printf(format string, v ...interface{}) (n int, err error) {


Dentro de la función Printf, v actúa como una variable de tipo []interfaz{} pero si se pasa a otra función variable, actúa como una lista normal de argumentos. Aquí está la implementación de la función log.Println que usamos anteriormente. Pasa sus argumentos directamente a fmt.Sprintln para el formato real.


// Println prints to the standard logger in the manner of fmt.Println.

func Println(v ...interface{}) {

    std.Output(2, fmt.Sprintln(v...))  // Output takes parameters (int, string)

}


Escribimos ... después de v en la llamada anidada a Sprintln para decirle al compilador que trate a v como una lista de argumentos; de lo contrario, simplemente pasaría v como argumento de un solo segmento.

martes, 23 de enero de 2024

gRPC Server


Una vez que tengamos una definición de servicio (un archivo .proto), podemos usarla para generar el código del lado del servidor o del cliente usando el protocolo del compilador del búfer de protocolo. Con el complemento gRPC para búferes de protocolo, puede generar código del lado del servidor y del lado del cliente de gRPC, así como el código del búfer de protocolo normal para completar, serializar y recuperar sus tipos de mensajes.

En el lado del servidor, el servidor implementa esa definición de servicio y ejecuta un servidor gRPC para manejar las llamadas de los clientes. Por lo tanto, para generar un servicio gRPC necesitamos:

1. Implementar la lógica del servicio, en el esqueleto del la clase generada. 

2. Ejecute un servidor gRPC para escuchar las solicitudes de los clientes y devolver las respuestas del servicio.

Al implementar la lógica del servicio, lo primero que debe hacer es generar el esqueleto del servicio a partir de la definición del servicio. Por ejemplo:


import (

...

"context"

pb "github.com/grpc-up-and-running/samples/ch02/productinfo/go/proto"

"google.golang.org/grpc"

...

)

// ProductInfo implementation with Go

// Add product remote method

func (s *server) AddProduct(ctx context.Context, in *pb.Product) (

*pb.ProductID, error) {

// business logic

}

// Get product remote method

func (s *server) GetProduct(ctx context.Context, in *pb.ProductID) (

*pb.Product, error) {

// business logic

}


Dentro del cuerpo de estas funciones remotas puedes implementar la lógica de cada función.

Una vez que tengamos lista la implementación del servicio, debe ejecutar un servidor gRPC para escuchar las solicitudes de los clientes, enviar esas solicitudes a la implementación del servicio y devolver las respuestas del servicio al cliente. Por ejemplo:  

func main() {
    lis, _ := net.Listen("tcp", port)
    s := grpc.NewServer()
    pb.RegisterProductInfoServer(s, &server{})
    if err := s.Serve(lis); err != nil {
        log.Fatalf("failed to serve: %v", err)
    }
}

En el ejemplo anterior se muestra una implementación de servidor gRPC con Go para el caso de uso del servicio ProductInfo. Aquí abrimos un puerto TCP, iniciamos el servidor gRPC y registramos el servicio ProductInfo con ese servidor. Y eso es todo lo que tienes que hacer en el lado del servidor. 


lunes, 15 de enero de 2024

Go Patterns


Estas estudiando Golang y queres aprender patrones de diseño? bueno, te dejo este recurso que te va a venir super bien. 


Dejo link: https://github.com/tmrts/go-patterns

viernes, 12 de enero de 2024

¡C# es el lenguaje de programación del año 2023!

Como cada año se publica el indice tiobe que indica el uso de los lenguajes. Y este año la novedad fue el amplio crecimiento de C#. 

"Por primera vez en la historia del índice TIOBE, C# ha ganado el premio al lenguaje de programación del año. ¡Felicidades! C# ha estado entre los 10 mejores durante más de 2 décadas y ahora que se está poniendo al día con los 4 grandes lenguajes, ganó el merecido premio al ser el lenguaje con el mayor repunte en un año (+1,43%). Los segundos puestos son Scratch (+0,83%) y Fortran (+0,64%). C# le está quitando cuota de mercado a Java y se está volviendo cada vez más popular en dominios como backends de aplicaciones web y juegos (gracias a Unity). C# se puede utilizar de forma gratuita y evoluciona a un ritmo constante, lo que hace que el lenguaje sea más expresivo con cada nueva versión. C# llegó para quedarse y pronto podría incluso superar a Java.

Aparte de C#, el año pasado hubo muchos cambios interesantes en el índice TIOBE. Fortran y Kotlin se convirtieron permanentemente en los 20 mejores jugadores reemplazando a los antiguos favoritos R y Perl. Fortran está muy preparado para hacer cálculos con buenas bibliotecas y sigue siendo uno de los favoritos de las universidades en muchos ámbitos. Kotlin es el competidor de Java fácil de aprender y escribir. Pregunta interesante: ¿qué lenguajes entrarán en el top 20 del índice TIOBE en 2024? Esto es muy difícil de predecir. Julia tocó brevemente el índice TIOBE en 2023, pero no pudo mantener esa posición. Se necesita la madurez del idioma y la comunidad de Julia para tener una segunda oportunidad. Apostaría por Dart (con Flutter) y TypeScript. Este último ya se utiliza mucho en la industria, pero por alguna razón todavía no se destaca en el índice TIOBE. Veamos qué nos depara el 2024." -- Paul Jansen, director ejecutivo de TIOBE Software (Esto nos dice la pagina oficial de TIOBE.)

Como lenguje más utilizado lo tenemos a python, seguido de c, c++ y java. 


Jan 2024Jan 2023ChangeProgramming LanguageRatingsChange
11Python pagePython13.97%-2.39%
22C pageC11.44%-4.81%
33C++ pageC++9.96%-2.95%
44Java pageJava7.87%-4.34%
55C# pageC#7.16%+1.43%
67changeJavaScript pageJavaScript2.77%-0.11%
710changePHP pagePHP1.79%+0.40%
86changeVisual Basic pageVisual Basic1.60%-3.04%
98changeSQL pageSQL1.46%-1.04%
1020changeScratch pageScratch1.44%+0.86%
1112changeGo pageGo1.38%+0.23%
1227changeFortran pageFortran1.09%+0.64%
1317changeDelphi/Object Pascal pageDelphi/Object Pascal1.09%+0.36%
1415changeMATLAB pageMATLAB0.97%+0.06%
159changeAssembly language pageAssembly language0.92%-0.68%
1611changeSwift pageSwift0.89%-0.31%
1725changeKotlin pageKotlin0.85%+0.37%
1816changeRuby pageRuby0.80%+0.01%
1918changeRust pageRust0.79%+0.18%
2031changeCOBOL pageCOBOL0.78%+0.45%



La verdad es que descreo un poco de este indice, por ejemplo me llama la atención que Rust bajo, cuando en general veo que va creciendo mucho. O por ejemplo que sea más utilizado Scratch que Go o Rust. Son cositas que no me cierran :( 


Dejo link: https://www.tiobe.com/tiobe-index/

Que es gRPC?

 


gRPC es una tecnología de comunicación entre procesos que nos permite conectar, invocar, operar y depurar aplicaciones heterogéneas distribuidas tan fácilmente como realizar una llamada a una función local.

Cuando desarrollamos una aplicación gRPC, lo primero que hacemos es definir una interfaz de servicio. La definición de la interfaz de servicio contiene información sobre cómo los consumidores pueden consumir el servicio, qué métodos permite que los consumidores llamen de forma remota, qué parámetros de método y formatos de mensaje usar al invocar esos métodos, etc. El lenguaje que especificamos en la definición del servicio se conoce como lenguaje de definición de interfaz (IDL).

Con esa definición de servicio, se puede generar el código del lado del servidor conocido como esqueleto del servidor, que simplifica la lógica del lado del servidor al proporcionar abstracciones de comunicación de bajo nivel. Además, puede generar el código del lado del cliente, conocido como código auxiliar del cliente, que simplifica la comunicación del lado del cliente con abstracciones para ocultar la comunicación de bajo nivel para diferentes lenguajes de programación. Los métodos que especifique en la definición de la interfaz de servicio pueden ser invocados remotamente por el lado del cliente tan fácilmente como realizar una invocación de función local. El framework gRPC subyacente maneja todas las complejidades que normalmente se asocian con el cumplimiento de contratos de servicio estrictos, serialización de datos, comunicación de red, autenticación, control de acceso, observabilidad, etc.

Para comprender los conceptos fundamentales de gRPC, echemos un vistazo a un caso de uso del mundo real de un microservicio implementado con gRPC. Supongamos que estamos creando una aplicación minorista en línea compuesta por múltiples microservicios.


La definición del servicio se especifica en el archivo ProductInfo.proto, que utilizan tanto el lado del servidor como el del cliente para generar el código. En este ejemplo, hemos asumido que el servicio se implementa utilizando el lenguaje Go y que el consumidor se implementa utilizando Java. La comunicación de red entre el servicio y el consumidor se realiza a través de HTTP/2.


martes, 9 de enero de 2024

Primer servicio GRpc con Go


Vamos a hacer un servicio que salude en Go y GRpc. Lo primero que tenemos que hacer es instalar las dependencias: 

$ go install google.golang.org/protobuf/cmd/protoc-gen-go@latest

go: downloading google.golang.org/protobuf v1.28.1

$ go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@latest

go: downloading google.golang.org/grpc v1.2.1


Luego escribir el .proto : 

syntax = "proto3";


option go_package = "google.golang.org/grpc/examples/helloworld/helloworld";

option java_multiple_files = true;

option java_package = "io.grpc.examples.helloworld";

option java_outer_classname = "HelloWorldProto";


package helloworld;


// The greeting service definition.

service Greeter {

  // Sends a greeting

  rpc SayHello (HelloRequest) returns (HelloReply) {}

}


// The request message containing the user's name.

message HelloRequest {

  string name = 1;

}


// The response message containing the greetings

message HelloReply {

  string message = 1;

}

Este archivo, es un descriptor del servicio y nos permite generar código con el comando protoc, por ejemplo: 

protoc --go_out=. --go_opt=paths=source_relative --go-grpc_out=. --go-grpc_opt=paths=source_relative ./greetings/greetings.proto


Y luego podemos escribir el cliente y el servidor. Por ejemplo: 

Server: 

package main


import (

"context"

"flag"

"fmt"

"log"

"net"


"google.golang.org/grpc"

pb "google.golang.org/grpc/examples/helloworld/helloworld"

)


var (

port = flag.Int("port", 50051, "The server port")

)


// server is used to implement helloworld.GreeterServer.

type server struct {

pb.UnimplementedGreeterServer

}


// SayHello implements helloworld.GreeterServer

func (s *server) SayHello(ctx context.Context, in *pb.HelloRequest) (*pb.HelloReply, error) {

log.Printf("Received: %v", in.GetName())

return &pb.HelloReply{Message: "Hello " + in.GetName()}, nil

}


func main() {

flag.Parse()

lis, err := net.Listen("tcp", fmt.Sprintf(":%d", *port))

if err != nil {

log.Fatalf("failed to listen: %v", err)

}

s := grpc.NewServer()

pb.RegisterGreeterServer(s, &server{})

log.Printf("server listening at %v", lis.Addr())

if err := s.Serve(lis); err != nil {

log.Fatalf("failed to serve: %v", err)

}

}


y el cliente: 


package main


import (

"context"

"flag"

"log"

"time"


"google.golang.org/grpc"

"google.golang.org/grpc/credentials/insecure"

pb "google.golang.org/grpc/examples/helloworld/helloworld"

)


const (

defaultName = "world"

)


var (

addr = flag.String("addr", "localhost:50051", "the address to connect to")

name = flag.String("name", defaultName, "Name to greet")

)


func main() {

flag.Parse()

// Set up a connection to the server.

conn, err := grpc.Dial(*addr, grpc.WithTransportCredentials(insecure.NewCredentials()))

if err != nil {

log.Fatalf("did not connect: %v", err)

}

defer conn.Close()

c := pb.NewGreeterClient(conn)


// Contact the server and print out its response.

ctx, cancel := context.WithTimeout(context.Background(), time.Second)

defer cancel()

r, err := c.SayHello(ctx, &pb.HelloRequest{Name: *name})

if err != nil {

log.Fatalf("could not greet: %v", err)

}

log.Printf("Greeting: %s", r.GetMessage())

}


Y listo!

Para probarlo, ejecutamos el server : 

$ go run greeter_server/main.go


Y luego el cliente : 

$ go run greeter_client/main.go


Dejo link: https://grpc.io/docs/languages/go/quickstart/


domingo, 7 de enero de 2024

Jerarquía de archivos en Rust

mod garden;

Esto le indica a Rust que el contenido del módulo garden se encuentra en src/garden.rs. De manera similar, se puede definir un módulo garden::vegetables que va estar en src/garden/vegetables.rs.

Los módulos definidos en archivos también se pueden documentar mediante "comentarios internos del documento". Estos documentan el elemento que los contiene, por ejemplo: 


//! This module implements the garden, including a highly performant germination

//! implementation.


// Re-export types from this module.

pub use garden::Garden;

pub use seeds::SeedPacket;


/// Sow the given seed packets.

pub fn sow(seeds: Vec<SeedPacket>) {

    todo!()

}


/// Harvest the produce in the garden that is ready.

pub fn harvest(garden: &mut Garden) {

    todo!()

}


Antes de Rust 2018, los módulos debían estar ubicados en module/mod.rs en lugar de un archivo y esta sigue siendo una alternativa funcional para las ediciones posteriores a 2018.

La razón principal para introducir filename.rs como alternativa a filename/mod.rs fue porque muchos archivos llamados mod.rs pueden ser difíciles de distinguir en los IDE.

Un anidamiento más profundo puede utilizar carpetas, incluso si el módulo principal es un archivo:

src/

├── main.rs

├── top_module.rs

└── top_module/

    └── sub_module.rs


El lugar donde Rust buscará los módulos se puede cambiar con una directiva del compilador:

#[path = "some/path.rs"]
mod some_module;

Esto es útil, por ejemplo, si desea colocar pruebas para un módulo en un archivo llamado some_module_test.rs, similar a la convención en Go.