Translate

lunes, 30 de diciembre de 2024

Concurrencia en Erlang parte 3


La dificultad de obtener un escalado lineal no se debe al lenguaje en sí, sino a la naturaleza de los problemas a resolver. A menudo se dice que los problemas que escalan muy bien son vergonzosamente paralelos. Si buscas problemas vergonzosamente paralelos en Internet, es probable que encuentres ejemplos como el trazado de rayos (un método para crear imágenes en 3D), búsquedas de fuerza bruta en criptografía, predicción meteorológica, etc.

De vez en cuando, aparecen personas en canales de IRC, foros o listas de correo preguntando si Erlang podría usarse para resolver ese tipo de problema, o si podría usarse para programar en una GPU. La respuesta es casi siempre "no". La razón es relativamente simple: todos estos problemas suelen tratarse de algoritmos numéricos con mucho procesamiento de datos. Erlang no es muy bueno en esto.

Los problemas vergonzosamente paralelos de Erlang están presentes en un nivel superior. Por lo general, tienen que ver con conceptos como servidores de chat, conmutadores telefónicos, servidores web, colas de mensajes, rastreadores web o cualquier otra aplicación donde el trabajo realizado se pueda representar como entidades lógicas independientes (actores). Este tipo de problema se puede resolver de manera eficiente con un escalamiento casi lineal.

Muchos problemas nunca mostrarán tales propiedades de escalamiento. De hecho, solo se necesita una secuencia centralizada de operaciones para perderlo todo. Su programa paralelo solo va tan rápido como su parte secuencial más lenta. Un ejemplo de ese fenómeno se puede observar cada vez que va a un centro comercial. Cientos de personas pueden estar comprando a la vez, sin que rara vez interfieran entre sí. Luego, una vez que llega el momento de pagar, se forman colas tan pronto como hay menos cajeros que clientes listos para irse.

Sería posible agregar cajeros hasta que haya uno para cada cliente, pero luego necesitaría una puerta para cada cliente porque no podrían entrar o salir del centro comercial todos a la vez.

Dicho de otro modo, aunque los clientes pudieran elegir cada uno de sus artículos en paralelo y básicamente tardar tanto tiempo en comprar como si estuvieran solos o miles en la tienda, igualmente tendrían que esperar para pagar. Por lo tanto, su experiencia de compra nunca puede ser más corta que el tiempo que les lleva esperar en la cola y pagar.

Una generalización de este principio se denomina Ley de Amdahl. Indica cuánta aceleración puede esperar que tenga su sistema cada vez que le añada paralelismo, y en qué proporción:

Según la Ley de Amdahl, el código que es 50% paralelo nunca puede volverse más rápido que el doble de lo que era antes, y teóricamente se puede esperar que el código que es 95% paralelo sea aproximadamente 20 veces más rápido si se añaden suficientes procesadores. Lo interesante es que deshacerse de las últimas partes secuenciales de un programa permite una aceleración teórica relativamente grande en comparación con la eliminación de la misma cantidad de código secuencial en un programa que no es muy paralelo para empezar.

El paralelismo no es la respuesta a todos los problemas. En algunos casos, el uso del paralelismo incluso ralentizará su aplicación. Esto puede suceder siempre que su programa sea 100% secuencial, pero aún utilice múltiples procesos.

Uno de los mejores ejemplos de esto es el benchmark de anillo. Un benchmark de anillo es una prueba en la que muchos miles de procesos pasarán un fragmento de datos uno tras otro de manera circular. Piense en ello como un juego de teléfono si lo desea. En este benchmark, solo un proceso a la vez hace algo útil, pero la máquina virtual Erlang aún dedica tiempo a distribuir la carga entre los núcleos y a darle a cada proceso su parte de tiempo.

Esto juega en contra de muchas optimizaciones de hardware comunes y hace que la máquina virtual dedique tiempo a hacer cosas inútiles. Esto suele provocar que las aplicaciones puramente secuenciales se ejecuten mucho más lentamente en muchos núcleos que en uno solo. En este caso, deshabilitar el multiprocesamiento simétrico ($ erl -smp deshabilitar) puede ser una buena idea.