Translate
miércoles, 1 de mayo de 2019
Tombstones en Cassandra
En el mundo relacional, podría estar acostumbrado a la idea de una "eliminación suave o eliminación logica". En lugar de ejecutar realmente una instrucción de eliminación de SQL, la aplicación emitirá una instrucción de actualización que cambia un valor en una columna llamada "eliminado", a veces se hace esto por auditoría o mantener registros historico.
Este es un concepto similar en Cassandra llamado Tombstones (que no se como traducirlo). Así es como funcionan todas las eliminaciones. Cuando ejecuta una operación de eliminación, los datos no se eliminan inmediatamente. En su lugar, se trata como una operación de actualización que coloca una marca de eliminado.Tombstones es un marcador de eliminación que se requiere para suprimir datos antiguos en SSTables hasta que se pueda ejecutar la compactación.
Hay una configuración relacionada llamada Garbage Collection Grace Seconds. Esta es la cantidad de tiempo que el servidor esperará para recolectar un registro marcado como eliminado. De forma predeterminada, se establece en 864,000 segundos, el equivalente a 10 días. Cassandra hace un seguimiento del tiempo de marcado, y una vez que esta es más antigua que GCGraceSeconds, será recogida por el recolector de basura. El propósito de este retraso es dar a un nodo que no esté disponible el tiempo de recuperación; Si un nodo está inactivo por más tiempo que este valor, entonces se trata como fallido y reemplazado.
domingo, 28 de abril de 2019
Transacciones Ligeras y Paxos en Cassandra
Cassandra proporciona una consistencia ajustable, que incluye la capacidad de lograr una consistencia fuerte al especificar niveles de consistencia suficientemente altos.
Sin embargo, una consistencia sólida no es suficiente para evitar las condiciones de competencia en los casos en que los clientes necesitan leer y luego escribir datos.
Vamos explicar esto con un ejemplo, supongamos que tenemos una tabla Cliente. Imagine que estamos creando un cliente y que desea administrar los registros de usuarios como parte de una aplicación de administración de cuentas. Al crear una nueva cuenta de usuario, nos gustaría
asegúrarnos de que el registro de usuario no exista, para no sobrescribir involuntariamente los datos de usuario existentes. Así que hacemos una lectura para ver si el registro existe primero, y luego solo realizamos la creación si el registro no existe. El comportamiento que buscamos se denomina consistencia linealizable, lo que significa que nos gustaría garantizar que ningún otro cliente pueda interponerse entre nuestras consultas de lectura y escritura con su propia modificación. Desde la versión 2.0, Cassandra admite un mecanismo de transacción ligero (o "LWT") que proporciona una consistencia linealizable.
La implementación de LWT de Cassandra se basa en Paxos. Paxos es un algoritmo de consenso que permite que los nodos pares distribuidos se pongan de acuerdo sobre una propuesta, sin necesidad de un maestro para coordinar una transacción. Paxos y otros algoritmos de consenso surgieron como alternativas a los enfoques tradicionales basados en el compromiso de dos fases para las transacciones distribuidas.
El algoritmo básico de Paxos consta de dos etapas: preparar / prometer y proponer / aceptar. Para modificar los datos, un nodo coordinador puede proponer un nuevo valor a los nodos de réplica, asumiendo el rol de líder. Otros nodos pueden actuar como líderes simultáneamente para otras modificaciones. Cada nodo de réplica verifica la propuesta, y si la propuesta es la última que ha visto, promete no aceptar las propuestas asociadas con las propuestas anteriores. Cada nodo de réplica también devuelve la última propuesta que recibió que aún está en progreso. Si la propuesta es aprobada por la mayoría de las réplicas, el líder confirma la propuesta, pero con la advertencia de que primero debe cometer cualquier propuesta en curso que haya precedido a su propia propuesta.
La implementación de Cassandra amplía el algoritmo básico de Paxos para admitir la semántica de lectura antes de escritura deseada (también conocida como "comprobar y establecer"), y permitir que el estado se reinicie entre transacciones. Lo hace insertando dos fases adicionales en el algoritmo, para que funcione de la siguiente manera:
- Preparar / prometer
- Leer / Resultados
- Proponer / Aceptar
- Cometer / Ack
Por lo tanto, una transacción exitosa requiere cuatro viajes de ida y vuelta entre el nodo coordinador y las réplicas. Esto es más costoso que una escritura regular, por lo que debe pensar detenidamente sobre su caso de uso antes de usar LWT.
Las transacciones ligeras de Cassandra están limitadas a una sola partición. Internamente, Cassandra almacena un estado Paxos para cada partición. Esto asegura que las transacciones en diferentes particiones no puedan interferir entre sí.
Puede encontrar la implementación de Cassandra del algoritmo Paxos en el paquete org.apache.cassandra.service.paxos.
viernes, 26 de abril de 2019
Llego Ubuntu 19.04 Disco Dingo
Nueva versión de Ubuntu y que trae de nuevo viejo ...
Yaru, el tema por defecto introducido en Ubuntu 18.10 no soportaba iconos para varias aplicaciones de terceros. Los iconos regulares de estas aplicaciones no armonizaban demasiado bien con los de las instaladas. Ese problema estético fue corregido. También se modificaron los iconos del centro de software, la papelera y el panel de configuración. El fondo de escritorio, como sucede a cada nueva versión, corresponde a la mascota.
Viene con 3.22 de GNOME pero Ubuntu no adopta todas las características completas de la versión. Podemos seguir teniendo iconos en el escritorio y el panel lateral está presente en forma permanente. Por el contrario, no se incluyeron las (muy necesarias) mejoras en el centro de software ni los controles para activar fractional scalling en HiDPl.
La gran novedad de esta versión, es el soporte para las tarjetas gráficas AMD de gama alta, mejoras en el rendimiento de la CPU y soporte para más hardware todo gracias a Núcleo Linux 5.0
Dejo link: http://releases.ubuntu.com/19.04/
miércoles, 24 de abril de 2019
Libros a Java geeks
viernes, 19 de abril de 2019
Transferencia indirecta en Cassandra
Veamos el siguiente escenario: una solicitud de escritura se envía a Cassandra, pero un nodo de réplica al que pertenece la escritura, no está disponible debido un problema de la red, falla de hardware o alguna otra razón. Con el fin de garantizar la disponibilidad general del anillo en tal situación, Cassandra implementa una función llamada transferencia indirecta. Se puede pensar en una sugerencia como una pequeña nota Post-it que contiene la información de la solicitud de escritura. Si el nodo de réplica al que pertenece la escritura ha fallado, el coordinador creará una sugerencia, que es un pequeño recordatorio que dice: "Tengo la información de escritura destinada al nodo 4. Voy a recordar esta escritura hasta que el nodo 4 vuelva a estar en línea; cuando lo haga, le enviaré la solicitud de escritura". Es decir, una vez que detecte a través de gossip que el nodo 4 está nuevamente en línea, el nodo 6 entregará al nodo 4 la orden de escritura. Cassandra tiene una sugerencia diferente para cada partición que se va a escribir.
Esto permite que Cassandra esté siempre disponible para escrituras, y generalmente permite que un clúster sostenga la misma carga de escritura incluso cuando algunos de los nodos están inactivos. También reduce el tiempo en que un nodo fallido será inconsistente después de que vuelva a estar en línea.
En general, las sugerencias no cuentan como escrituras para propósitos de nivel de consistencia. La excepción es el nivel de consistencia ANY, que se agregó en 0.6. Este nivel de consistencia significa que un traspaso indirecto solo será suficiente para el éxito de una operación de escritura. Es decir, incluso si solo se pudo grabar una pista, la escritura todavía cuenta como exitosa. Tenga en cuenta que la escritura se considera duradera, pero es posible que los datos no se puedan leer hasta que la sugerencia se envíe a la réplica de destino.
Existe un problema práctico con las transferencia indirecta (y, en este caso, los enfoques de entrega garantizados): si un nodo está fuera de línea durante algún tiempo, los consejos pueden acumularse considerablemente en otros nodos. Luego, cuando los otros nodos notan que el nodo fallado ha vuelto a estar en línea, tienden a inundar ese nodo con solicitudes, justo en el momento en que es más vulnerable (cuando está luchando para volver a trabajar después de una falla). Para resolver este problema, Cassandra limita el almacenamiento de sugerencias a una ventana de tiempo configurable. También es posible deshabilitar el traspaso insinuado por completo.
Como su nombre lo sugiere, org.apache.cassandra.db.HintedHandOffManager es la clase
que gestiona las transferencias indirectas internamente.
Aunque la Transferencia indirecta ayuda a aumentar la disponibilidad de Cassandra, no reemplaza completamente la necesidad de reparación manual para garantizar la consistencia.
jueves, 18 de abril de 2019
Libros de java code geeks
|
domingo, 14 de abril de 2019
Caching en Apache Cassandra
Como vemos en la imagen anterior, Cassandra proporciona tres formas de almacenamiento en caché:
- La key cache almacena un mapa de claves de partición, lo que facilita un acceso de lectura más rápido a los archivos SSTables almacenados en el disco. La key cache se almacena en el heap de JVM.
- La row cache almacena filas enteras y puede acelerar enormemente el acceso de lectura para las filas a las que se accede con frecuencia, pero el costo de memoria es mayor. La row cache se almacena en la memoria fuera del heap.
- La counter cache se agregó en la versión 2.1 para mejorar el rendimiento del contador al reducir la contención de bloqueo para los contadores de acceso más frecuente.
De forma predeterminada, key cache y counter cache estan habilitados, mientras que la row cache está desactivada, ya que requiere más memoria. Cassandra guarda sus cachés en el disco periódicamente para ser más rápida en un reinicio de los nodos.
sábado, 13 de abril de 2019
Resultado de la encuesta 2019 de StackOverflow
StackOverflow desde hace algunos años hace unas encuestas que son muy buenas y nos permiten ver como esta el mercado del software.
En ocasión, no vi algo muy novedoso solo me llamo la atención es el lenguaje más amado :
Dejo link: https://insights.stackoverflow.com/survey/2019
En ocasión, no vi algo muy novedoso solo me llamo la atención es el lenguaje más amado :
Claramente le voy a tener que dar una oportunidad a Rush.
Dejo link: https://insights.stackoverflow.com/survey/2019
jueves, 11 de abril de 2019
BigData Europe
Necesitas una imagen de docker con un proyecto para procesar datos, bueno Big Data Europe es para vos...
Dejo link: https://github.com/big-data-europe
miércoles, 10 de abril de 2019
Python Developers Survey 2018 Results
Jetbrain como todos los años hace su encuestas y así tenemos los resultados:
https://www.jetbrains.com/research/python-developers-survey-2018/
La verdad no hubo muchas cosas que me llamaron la atención python es un lenguje que esta instalado ya en la sociedad.
Si puedo hacer una revisión a una cuestion sobre la relación de python con bigdata. Al parecer la gente de python utiliza spark para analizar sus datos.
https://www.jetbrains.com/research/python-developers-survey-2018/
La verdad no hubo muchas cosas que me llamaron la atención python es un lenguje que esta instalado ya en la sociedad.
Si puedo hacer una revisión a una cuestion sobre la relación de python con bigdata. Al parecer la gente de python utiliza spark para analizar sus datos.
domingo, 7 de abril de 2019
Memtables, SSTables y Commit Logs en Apache Cassandra
Veamos como es la estructura interna y archivos de apache cassandra. Cassandra guarda datos en memoria y en disco, uno que provee alta performance y el otro durabilidad. Cassandra tiene 3 estrucuras de guardado, memtables, sstables y commit logs.
Cuando realiza una operación de escritura, se escribe inmediatamente en commit logs. Commit logs es un mecanismo de recuperación ante errores. Permite volver a cassandra al estado anterior del error.
Una escritura no se considerará exitosa hasta que se escriba en el commit logs, para garantizar que si una operación de escritura no llega al almacén en memoria, aún será posible recuperar la datos. Si cierra la base de datos o se bloquea inesperadamente, el registro de confirmación puede garantizar que no se pierdan los datos. Esto se debe a que la próxima vez que inicie el nodo, el commit logs se volverá a reproducir. De hecho, esa es la única vez que se lee el registro de confirmación; los clientes nunca leen.
Después de que se escriba en el commit logs, el valor se escribe en una estructura de datos residente en la memoria llamada memtable. Cada memtable contiene datos para una tabla específica. En las primeras implementaciones de Cassandra, las memtables se almacenaban en el heap de JVM, pero las mejoras a partir de la versión 2.1 han trasladado la mayoría de los datos memtables a la memoria nativa. Esto hace que Cassandra sea menos susceptible a las fluctuaciones en el rendimiento debido a la recolección de basura de Java.
Cuando el número de objetos almacenados en la memtable alcanza un umbral, el contenido de la memtable se vacía en el disco en un archivo llamado SSTable. Entonces se crea una nueva memtable. Este lavado es una operación sin bloqueo; pueden existir múltiples memtables para una sola tabla, una actual y el resto a la espera de que se vacíe. Por lo general, no deberían tener que esperar mucho tiempo, ya que el nodo debería limpiarlos muy rápidamente a menos que esté sobrecargado.
Cada commit logs mantiene un indicador de bit interno para indicar si necesita vaciarse. Cuando se recibe una operación de escritura por primera vez, se escribe en el commit logs y su marca de bit se establece en 1. Solo hay una marca de bit por tabla, porque solo se escribe un commit logs en todo el servidor. Todas las escrituras en todas las tablas entrarán en el mismo commit logs, por lo que el indicador de bit indica si un commit logs en particular contiene algo que no se haya vaciado para una tabla en particular. Una vez que el memtable se ha colocado correctamente en el disco, el indicador de bit del commit logs correspondiente se establece en 0, lo que indica que el commit logs ya no tiene que mantener esos datos por motivos de durabilidad. Al igual que los archivos de registro normales, los commit logs tienen un umbral de transferencia configurable, y una vez que se alcanza este umbral de tamaño de archivo, el registro se reiniciará, llevando consigo los indicadores de bits sucios existentes.
El SSTable es un concepto tomado de Bigtable de Google. Una vez que un memtable se vacía en el disco como un SSTable, es inmutable y no puede ser cambiado por la aplicación. Luego las SSTables son compactadas, esta compactación cambia su representación en el disco y realiza el paso de "fusión" de una combinación en nuevos archivos y elimina los archivos antiguos en caso de éxito.
Desde la versión 1.0, Cassandra ha admitido la compresión de SSTables para maximizar el uso del almacenamiento disponible. Esta compresión es configurable por tabla. Cada SSTable también tiene un filtro Bloom asociado, que se utiliza como un mejorador de rendimiento adicional.
Todas las escrituras son secuenciales, esta es la razón principal por que las escrituras funcionan tan bien en Cassandra. No se requieren lecturas ni búsquedas de ningún tipo para escribir un valor a Cassandra porque todas las escrituras son operaciones de adición. Esto hace que una limitación clave en el rendimiento sea la velocidad de su disco. La compactación está destinada a amortizar la reorganización de datos, pero utiliza I/O secuencial para hacerlo. Así que el beneficio de rendimiento se obtiene mediante la división; la operación de escritura es solo un apéndice inmediato, y luego la compactación ayuda a organizar para un mejor rendimiento de lectura en el futuro.
En las lecturas, Cassandra leerá tanto SSTables como memtables para encontrar valores de datos, ya que la memtable puede contener valores que aún no se han vaciado en el disco. Los memtables son implementados por la clase org.apache.cassandra.db.Memtable.
Consultas y el coordinador de nodos en Apache Cassandra
Vamos a discutir como Cassandra coordina los nodos ante una consulta o escritura de un cliente.
Un cliente puede conectarse con cualquier nodo del anillo para realizar consultas o escrituras. Este nodo se denomina coordinator node o nodo coordinador. El coordinador identifica que nodos son replicas del dato que debe ser guardado o leido y luego procesa la consulta o escritura.
Para escribir, el coordinador contancta a todas las replicas que debe contactar según el consistency level o nivel de consistencia y el factor de replicación y considera la escritura exitosa cuando el numero de replicaciónes escritas son compatibles con el numero determinado en el nivel de consistencia.
Para la lectura, el coordinador contacta las replicas que son necesarias para aplicar con el nivel de consistencia, y retorna el dato al cliente.
Estos son los “caminos felices”, pero no todo es color de rosas y luego debemos discutir que sucede cuando no tenemos el numero de replicaciones para aplicar al nivel de consistencia.
sábado, 6 de abril de 2019
Consistency Levels en Apache Cassandra
El teorema de CAP de Brewer nos indica que en el que la consistencia, la disponibilidad y la tolerancia de partición se intercambian entre sí es deci no puede haber base que cumpla los 3 pero se pueden intercambiar. Cassandra proporciona niveles de consistencia ajustables que le permiten realizar estas compensaciones en un nivel de grano fino.
Se puede especificar un nivel de consistencia en cada consulta de lectura o escritura que indica cuánta consistencia necesita. Un nivel de consistencia más alto significa que más nodos deben responder a una consulta de lectura o escritura, lo que le da más seguridad de que los valores presentes en cada réplica son los mismos.
Para las consultas de lectura, el nivel de consistencia especifica cuántos nodos de réplica deben responder a una solicitud de lectura antes de devolver los datos. Para las operaciones de escritura, el nivel de consistencia especifica cuántos nodos de réplica deben responder para que la escritura se informe como exitosa al cliente. Debido a que Cassandra finalmente es consistente, las actualizaciones a otros nodos de réplica pueden continuar en segundo plano.
Los niveles de consistencia disponibles incluyen UNO, DOS y TRES, cada uno de los cuales especifica un número absoluto de nodos de réplica que deben responder a una solicitud. El nivel de consistencia QUORUM requiere una respuesta de la mayoría de los nodos de réplica (a veces expresados como "factor de replicación / 2 + 1"). El nivel de consistencia de ALL requiere una respuesta de todas las réplicas. Examinaremos estos niveles de consistencia y otros más detalladamente en el Capítulo 9.
Tanto para las lecturas como para las escrituras, los niveles de consistencia de ANY, ONE, TWO y THREE se consideran débiles, mientras que QUORUM y ALL se consideran fuertes. La coherencia se puede ajustar en Cassandra porque los clientes pueden especificar el nivel de consistencia deseado tanto en las lecturas como en las escrituras. Hay una ecuación que se usa popularmente para representar la manera de lograr una consistencia fuerte en Cassandra: R + W> N = consistencia fuerte. En esta ecuación, R, W y N son el recuento de réplicas de lectura, el recuento de réplicas de escritura y el factor de replicación, respectivamente; todas las lecturas de los clientes verán la escritura más reciente en este escenario, y tendrá una consistencia sólida.
Si eres nuevo en Cassandra, el factor de replicación a veces se puede confundir con el nivel de consistencia. El factor de replicación se establece por espacio de teclas. El nivel de consistencia es especificado por consulta, por el cliente.
El factor de replicación indica cuántos nodos desea utilizar para almacenar un valor durante cada operación de escritura. El nivel de consistencia especifica cuántos nodos ha decidido el cliente debe responder
Para sentirse seguro de una operación de lectura o escritura exitosa. La confusión surge porque el nivel de consistencia se basa en el factor de replicación, no en el número de nodos en el sistema.
Tipos que pueden ser referencia a nulos en F# 5
La introducción de tipos que pueden ser referencia a nulos en en C # representa el mayor cambio en la forma en que los desarrolladores de .NET escriben código desde async / await. Una vez que esté en funcionamiento, se tendrán que actualizar innumerables bibliotecas con anotaciones que admiten nulos para que esta característica funcione correctamente. Y para garantizar la interoperabilidad, F # deberá tambien modificarse.
F# actualmente soporta varias versiones de nulabilidad. Primero hay tipos normales de referencia en .NET. Hoy en día no hay manera de informar inequívocamente al compilador si una variable de tipo de referencia específica es nullable o no, por lo que se desaconseja su uso en F #.
La alternativa preferida es la Option<T>. También conocido como un tipo de "tal vez", esta es una forma segura para expresar el concepto de nulabilidad. Cuando se usa con el código F # idiomático, solo puede leer el valor después de verificar si no es nulo (no es "ninguno" en el lenguaje F #). Esto generalmente se hace a través de la comparación de patrones. Por ejemplo,
F# actualmente soporta varias versiones de nulabilidad. Primero hay tipos normales de referencia en .NET. Hoy en día no hay manera de informar inequívocamente al compilador si una variable de tipo de referencia específica es nullable o no, por lo que se desaconseja su uso en F #.
La alternativa preferida es la Option<T>. También conocido como un tipo de "tal vez", esta es una forma segura para expresar el concepto de nulabilidad. Cuando se usa con el código F # idiomático, solo puede leer el valor después de verificar si no es nulo (no es "ninguno" en el lenguaje F #). Esto generalmente se hace a través de la comparación de patrones. Por ejemplo,
match ParseDateTime inputString with
| Some(date) -> printfn "%s" (date.ToLocalTime().ToString())
| None -> printfn "Failed to parse the input."
| Some(date) -> printfn "%s" (date.ToLocalTime().ToString())
| None -> printfn "Failed to parse the input."
Option<T> es un tipo de referencia. Esto puede llevar a una gran cantidad de uso de memoria innecesaria, por lo que se creó una alternativa basada en estructura llamada ValueOption<T> en F # 4.5. Sin embargo, a ValueOption<T> le faltan algunas características que no estarán completas hasta que se lance F # 4.6.
Otro tipo de null F # con el que los desarrolladores deben tratar es Nullable<T>. Esto es similar a ValueOption<T>, pero está restringido a solo tipos de valor.
Las clases también se pueden marcar como nullables. Si el tipo tiene el atributo AllowNullLiteral, entonces todas las variables de ese tipo se consideran nullables. Esto puede ser problemático cuando desea que algunas variables de ese tipo sean nullables, pero no otras.
Las clases también se pueden marcar como nullables. Si el tipo tiene el atributo AllowNullLiteral, entonces todas las variables de ese tipo se consideran nullables. Esto puede ser problemático cuando desea que algunas variables de ese tipo sean nullables, pero no otras.
Un problema fundamental de diseño con F # tal como se encuentra actualmente es que todas estas formas diferentes de nulabilidad son incompatibles. No solo se necesitan conversiones entre los diferentes tipos de nulos, sino que también existen diferencias importantes en la forma en que funcionan. Por ejemplo, una Option<T> es recursiva, lo que le permite tener una Option<Option<Int32>> mientras que Nullable<T> no lo es. Esto puede llevar a problemas inesperados cuando se mezclan.
Otra forma en que esta incompatibilidad entra en juego es el atributo CLIMutable. Normalmente, los tipos de registro son inmutables, pero eso los hace incompatibles con los ORM. Este atributo soluciona ese problema, pero introduce uno nuevo. Ahora que el registro es mutable, los nulos se pueden deslizar después de crear el objeto, rompiendo la suposición de que los registros no contienen nulos.
El plan actual es indicar variables anulables con un ? sufijo como vemos en C#. Y al igual que C# 8, recibirá advertencias si intenta invocar un método o una propiedad en una variable que puede contener nulos sin verificar primero si es nulo. Del mismo modo, la asignación de un valor nulo a una variable no anulable es solo una advertencia, por lo que el código heredado continúa compilando.
Esta funcionalidad se considera como opt-in. Los nuevos proyectos lo tendrán activado de forma predeterminada, mientras que los proyectos existentes lo desactivarán de forma predeterminada.
Los ejemplos a continuación fueron proporcionados por la propuesta de Tipos de Referencia de Nullable y están sujetos a cambios.
// Declared type at let-binding
let notAValue : string? = null
// Declared type at let-binding
let isAValue : string? = "hello world"
let isNotAValue2 : string = null // gives a nullability warning
let getLength (x: string?) = x.Length // gives a nullability warning since x is a nullable string
// Parameter to a function
let len (str: string?) =
match str with
| null -> -1
| NonNull s -> s.Length // binds a non-null result
// Parameter to a function
let len (str: string?) =
let s = nullArgCheck "str" str // Returns a non-null string
s.Length // binds a non-null result
// Declared type at let-binding
let maybeAValue : string? = hopefullyGetAString()
// Array type signature
let f (arr: string?[]) = ()
// Generic code, note 'T must be constrained to be a reference type
let findOrNull (index: int) (list: 'T list) : 'T? when 'T : not struct =
match List.tryItem index list with
| Some item -> item
| None -> null
let notAValue : string? = null
// Declared type at let-binding
let isAValue : string? = "hello world"
let isNotAValue2 : string = null // gives a nullability warning
let getLength (x: string?) = x.Length // gives a nullability warning since x is a nullable string
// Parameter to a function
let len (str: string?) =
match str with
| null -> -1
| NonNull s -> s.Length // binds a non-null result
// Parameter to a function
let len (str: string?) =
let s = nullArgCheck "str" str // Returns a non-null string
s.Length // binds a non-null result
// Declared type at let-binding
let maybeAValue : string? = hopefullyGetAString()
// Array type signature
let f (arr: string?[]) = ()
// Generic code, note 'T must be constrained to be a reference type
let findOrNull (index: int) (list: 'T list) : 'T? when 'T : not struct =
match List.tryItem index list with
| Some item -> item
| None -> null
Como puede ver, la nueva sintaxis se adapta bien a los patrones F # existentes, incluso admite la coincidencia de patrones de manera similar a la Option<T>.
También hay un conjunto de funciones de ayuda para agregar en el código general y la coincidencia de patrones.
isNull: determina si el valor dado es nulo.
nonNull: afirma que el valor no es nulo. Provoca una NullReferenceException cuando el valor es nulo, de lo contrario, devuelve el valor.
withNull: convierte el valor en un tipo que admite nulo como un valor normal.
(| NonNull |): cuando se usa en un patrón, se afirma que el valor que se compara no es nulo.
(| Null | NotNull |): Un patrón activo que determina si el valor dado es nulo.
Las firmas de funciones completas están disponibles en la propuesta.
Suscribirse a:
Entradas (Atom)