Translate

viernes, 24 de mayo de 2019

Usando .NET y Docker


NET Core es cada día más amigable con docker y todas las mejoras se centraron en .NET Core 3.0. El cambio más importante fue la reducción de la memoria que utiliza en tiempo de ejecución de .NET Core (CoreCLR) de forma predeterminada. El CoreCLR gestiona la ejecución de todos los programas .NET Core; la memoria que utiliza de forma predeterminada es la cantidad de memoria asignada inicialmente cuando se ejecuta un programa .NET. Reducir el uso de memoria CoreCLR predeterminado significa aumentar la eficiencia de uso de memoria del contenedor sin cambiar la configuración predeterminada de .NET Core.

Con las modificaciones recientes, .NET Core 3.0 ahora también admite límites de recursos de Docker (memoria y CPU). Los límites de recursos permiten controlar cuánta memoria o CPU puede usar un contenedor. Estos límites se describen en términos de cantidad tanto para la memoria como para la CPU (es decir, 128 MB de memoria o dos CPU). Cuando se establecen los límites de memoria, .NET Core 3.0 cambia su comportamiento en consecuencia: el tamaño del montón del recolector de basura está limitado a 20 MB o 75% del límite de memoria. En el caso de los límites de la CPU, el valor establecido en Docker se redondea al siguiente valor entero. Este valor es el número máximo efectivo de núcleos de CPU utilizados por CoreCLR.

Las mejoras también afectaron la capacidad de uso de .NET en los contenedores de Docker a un nivel superior. De acuerdo con la solicitud de la comunidad, Microsoft agregó PowerShell Core como una aplicación independiente a las imágenes de contenedor de .NET Core SDK Docker disponibles. Además, las imágenes de contenedor de .NET Core ahora están disponibles a través de Microsoft Container Registry (MCR). Esto permite utilizar Microsoft Azure como la fuente oficial de imágenes de contenedor provistas por Microsoft, y como una red de distribución de contenido global (CDN) para entregar imágenes de contenedor de acuerdo con la ubicación geográfica del usuario.

Si bien .NET Core es compatible con múltiples distribuciones y versiones de plataforma, la lista de distribuciones compatibles para Docker es mucho más pequeña. Por el momento, solo se admiten versiones específicas de las distribuciones Alpine, Debian y Ubuntu, junto con todas las versiones de Windows Nano Server. El equipo de .NET Core está en proceso de agregar soporte para ARM64 en Linux.

Richard Lander, gerente de programas del equipo de .NET, dijo en la publicación del blog sobre las mejoras: "Estamos comprometidos en hacer de .NET un runtime de contenedores. En versiones anteriores, pensamos en .NET Core como un contenedor amigable. Ahora estamos fortaleciendo el tiempo de ejecución para que sea consciente de los contenedores y funcione de manera eficiente en entornos de poca memoria ".

La comunidad .NET recibió bien las mejoras en el rendimiento del marco. Además de la publicación del blog, los oradores de Microsoft y Docker presentaron varias sesiones en DockerCon 2019 relacionadas con el desarrollo de .NET mediante contenedores. Una de estas sesiones se centró en la contención de aplicaciones .NET heredadas, que es un tema de especial interés para las empresas con una larga historia de desarrollo utilizando .NET. Esta sesión fue organizada por un representante de Docker, e ilustra los esfuerzos recientes de la compañía de estimular el uso de contenedores por parte de la industria y apoyar a la comunidad de desarrolladores.

Los esfuerzos de Microsoft parecen alinearse con las intenciones de Docker, así como con otras iniciativas de diferentes comunidades de desarrollo. Otras áreas de productos de Microsoft están siguiendo la misma tendencia: a principios de este mes, Microsoft lanzó una nueva extensión de desarrollo remoto para VS Code, que permite el desarrollo continuo utilizando contenedores remotos junto con una instancia local de VS Code.

Dejo link: https://devblogs.microsoft.com/dotnet/using-net-and-docker-together-dockercon-2019-update/

domingo, 19 de mayo de 2019

Arquitectura dirigida por eventos (SEDA) en Apache Cassandra


El diseño de Cassandra fue influenciado por Staged Event-Driven Architecture (SEDA). SEDA es una arquitectura general para servicios de Internet altamente concurrentes, propuesta originalmente en un documento de 2001 llamado "SEDA: An Architecture for Well-Conditioned, Scalable
Internet Services" de Matt Welsh, David Culler y Eric Brewer. Puede leer el documento original de SEDA en http://www.eecs.harvard.edu/~mdw/proj/seda.

En una aplicación típica, una sola unidad de trabajo se realiza a menudo dentro de los límites de un solo hilo. Una operación de escritura, por ejemplo, comenzará y terminará dentro del mismo hilo. Cassandra, sin embargo, es diferente: su modelo de concurrencia se basa en SEDA, por lo que una sola operación puede comenzar con un hilo, que luego pasa el trabajo a otro hilo, que puede pasarlo a otros hilos. Pero no corresponde al hilo actual entregar el trabajo a otro hilo. En su lugar, el trabajo se subdivide en lo que se denomina etapas, y el grupo de subprocesos (en realidad, un servicio java.util.concurrent.Executor) asociado con la etapa determina la ejecución.

Una etapa es una unidad básica de trabajo, y una sola operación puede realizar una transición interna de estado de una etapa a la siguiente. Debido a que cada etapa puede ser manejada por un grupo de subprocesos diferente, Cassandra experimenta una mejora masiva del rendimiento. Este diseño también significa que Cassandra puede administrar mejor sus propios recursos internamente porque diferentes operaciones pueden requerir Entrada y Salida de disco, o pueden estar vinculadas al CPU, o pueden ser operaciones de red, y así sucesivamente, para que los grupos puedan administrar su trabajo de acuerdo a la disponibilidad de estos recursos.

Una etapa consiste en una cola de eventos entrantes, un controlador de eventos y un grupo de subprocesos asociado. Las etapas son administradas por un controlador que determina la programación y la asignación de subprocesos; Cassandra implementa este tipo de modelo de concurrencia utilizando el grupo de subprocesos java.util.concurrent.ExecutorService. Para ver específicamente cómo funciona esto, echa un vistazo a la clase org.apache.cassandra.concurrent.StageManager. Las siguientes operaciones se representan como etapas en Cassandra, incluidos muchos de los conceptos que hemos analizado en post anteriores :


Algunas operaciones adicionales también se implementan como etapas, como las operaciones en memtables que incluyen el vaciado de datos a SSTables y la liberación de memoria. Las etapas implementan la interfaz IVerbHandler para admitir la funcionalidad de un verbo dado. Debido a que la idea de mutación se representa como una etapa, puede desempeñar un papel en las operaciones de inserción y eliminación.

Dejo link : https://en.wikipedia.org/wiki/Staged_event-driven_architecture


sábado, 18 de mayo de 2019

Libros de Java Code Geeks

Download IT Guides!

 
Git is, without any doubt, the most popular version control system. Ironically, there are other version control systems easier to learn and to use, but, despite that, Git is the favorite option for developers, which is quite clarifying about the powerfulness of Git. In this guide, we will cover all the topics needed to know in order to use Git properly, from explaining what is it and how it differs from other tools, to its usage, covering also advanced topics and practices that can suppose an added value to the process of version controlling.
 
 
The Spring Framework is an open-source application framework and inversion of control container for the Java platform. The framework's core features can be used by any Java application, but there are extensions for building web applications on top of the Java EE platform. Although the framework does not impose any specific programming model, it has become popular in the Java community as an alternative to, replacement for, or even addition to the Enterprise JavaBeans (EJB) model.
 
 
Apache Hadoop is an open-source software framework written in Java for distributed storage and distributed processing of very large data sets on computer clusters built from commodity hardware. In this eBook, we provide a compilation of Hadoop based examples that will help you kick-start your own web projects. We cover a wide range of topics, from installation and configuration, to distributed caching and streaming. 
 
 
Selenium is a portable software testing framework for web applications. Selenium provides a record/playback tool for authoring tests without learning a test scripting language (Selenium IDE). It also provides a test domain-specific language (Selenese) to write tests in a number of popular programming languages, including Java, C#, Groovy, Perl, PHP, Python and Ruby.
 

jueves, 16 de mayo de 2019

Borrar redologs viejos en Oracle

Si utilizamos las base de datos Oracle estaremos familiarizados con el modo ArchiveLog. En este modo la base de datos archiva redologs viejos, lo que nos permite realizar muchas acciones de recuperación de datos, pero nos llena el disco. Por esa razon es conveniente periodicamente remoder redologs muy antiguos.

Para hacerlo debemos utilizar la herramienta RMAN. Para esto nos logeamos en el servidor y tipiamos rman:

% rman

RMAN>

Las conexiones RMAN a una base de datos se especifican y autentican de la misma manera que las conexiones SQL * Plus a una base de datos. La única diferencia es que las conexiones RMAN a una base de datos de destino o auxiliar requieren el privilegio SYSDBA. Las palabras clave AS SYSDBA están implícitas y no se pueden especificar explícitamente.

Puede conectarse a una base de datos con opciones de línea de comandos o mediante el comando CONNECT TARGET. El siguiente ejemplo inicia RMAN y luego se conecta a una base de datos de destino a través de Oracle Net (tenga en cuenta que AS SYSDBA no se especifica porque está implícito). RMAN solicita una contraseña.

RMAN>  CONNECT TARGET SYS@SERVER


Primero listamos los logs :


RMAN> list archivelog all;


Luego removemos los que tienen más de 10 días


RMAN> delete archivelog until time 'SYSDATE-10';



released channel: ORA_DISK_1

allocated channel: ORA_DISK_1

channel ORA_DISK_1: SID=55 device type=DISK

List of Archived Log Copies for database with db_unique_name SERVER

=====================================================================



Key     Thrd Seq     S Low Time

------- ---- ------- - ---------

504     1    635     A 26-MAR-19

        Name: /1_635_966300309.dbf



505     1    636     A 27-MAR-19

        Name: /1_636_966300309.dbf



...

Do you really want to delete the above objects (enter YES or NO)? YES

deleted archived log

archived log file name=/1_635_966300309.dbf RECID=504 STAMP=1003998698

deleted archived log

...


Y Listo!

También podemos eliminar los logs y de las siguientes maneras :

RMAN>delete archivelog all;
RMAN>delete archivelog until time ‘SYSDATE-10’;
RMAN>delete archivelog from time ‘SYSDATE-10’
RMAN>delete archivelog from time ‘SYSDATE-10’ until time ‘SYSDATE-2’;
RMAN>delete archivelog from sequence 1000;
RMAN>delete archivelog until sequence 1500;
RMAN>delete archivelog from sequence 1000 until sequence 1500;



domingo, 12 de mayo de 2019

Anti-Entropia, Reparación y Arboles de Merkle en Cassandra



Cassandra utiliza un protocolo anti-entropico, que es un tipo de protocolo gossip para reparación de replicas de datos. Los protocolos anti-entropicos funcionan por medio de comparación de las diferentes replicas de datos y conciliando las diferencias entre las replicas. Los protocolos anti-entropicos son usados por muchas bases de datos noSql como Amazon’s Dynamo.

La sincronización de réplicas se admite a través de dos modos diferentes conocidos como reparación de lectura y reparación anti-entropía. La reparación de lectura se refiere a la sincronización de las réplicas a medida que se leen los datos. Cassandra lee los datos de varias réplicas para alcanzar el nivel de consistencia solicitado y detecta si alguna réplica tiene valores desactualizados. Si un número insuficiente de nodos tiene el último valor, se realiza una reparación de lectura inmediatamente para actualizar las réplicas desactualizadas. De lo contrario, las reparaciones se pueden realizar en segundo plano después de las devoluciones de lectura. Esta funcionalidad no es solo de Cassandra, también es utilizada en bases noSql clave/valor como Voldemort y Riak.

La reparación anti-entropica (a veces llamada reparación manual) es una operación iniciada manualmente en nodos como parte de un proceso de mantenimiento regular. Este tipo de reparación se ejecuta mediante una herramienta llamada nodetool. La ejecución de la reparación de nodetool hace que Cassandra ejecute una compactación principal. Durante una compactación principal, el servidor inicia una conversación TreeRequest / TreeReponse para intercambiar árboles Merkle con nodos vecinos. El árbol Merkle es un hash que representa los datos en esa tabla. Si los árboles de los diferentes nodos no coinciden, deben ser reconciliados (o "reparados") para determinar los valores de datos más recientes en los que se deben configurar. Esta validación de comparación de árbol es responsabilidad de la clase org.apache.cassandra.service.AbstractReadExecutor.

Los arboles de Merkle son utilizados por Cassandra y Dynamo para conciliar los datos de diferentes nodos, su nombre se debe a su inventor Ralph Merkle y se lo conoce tambien como “hash tree.” En cassandra esto se implementa con la clase org.apache.cassandra.utils.MerkleTree.

Tanto Cassandra y Dynamo utilizan arboles hash como un protocolo anti-entropico pero su implementación es un tanto diferente. En Cassandra cada tabla tiene su propio arbol, y esto es construido como un snapshot o fotografía en el momento de una compactación principal y se mantiene solo el tiempo necesario para enviarlo a los nodos vecinos en el anillo. La ventaja de esta implementación es que reduce la entrada/salida de la red.


miércoles, 8 de mayo de 2019

Apache NetBeans fue promovido a Top-Level Apache Project


NetBeans, un entorno de desarrollo integrado (IDE), fue promovido recientemente a un proyecto  Top-Level Apache Project, aproximadamente dos años y medio después de que Oracle donó su código fuente a la Fundación de software Apache.

Los equipos de desarrollo que buscan probar las funciones completas de NetBeans pueden descargar directamente NetBeans 11 desde Apache y ver una lista completa de las nuevas funciones en esta versión. Los desarrolladores pueden probar el IDE en cualquier fase de sus proyectos, incluso si actualmente se usan otros IDE.

Dejo link: https://www.globenewswire.com/news-release/2019/04/24/1808620/0/en/The-Apache-Software-Foundation-Announces-Apache-NetBeans-as-a-Top-Level-Project.html

Libros de Java Code Geeks

Download IT Guides!

 
Office 365 is suite of advanced collaboration tools used by many well known organizations and their system administrators. What You Will Learn: Learn how to implement Office 365 from scratch and how to use best practices to be a successful Office 365 professional. Understand Microsoft productivity services to take your organization or business to the next level by increasing productivity
 
 
You've invested in great tools for your company, but are your people making the most them? Don't worry, we can help. This guide explains how Slack can help reduce context-switching by bringing together your people, data, and applications into one secure platform. We also share five actionable ways integrating your tools and software with Slack can significantly improve problem-solving and decision-making throughout the business
 
 
This free 1-hour webinar from GigaOm Research brings together experts in Kubernetes on-prem ops success, featuring GigaOm Analyst David Linthicum and special guest John Mao, VP Business Development from Stratoscale. In this 1-hour webinar, we will explore: Why approaches to Kubernetes success are changing.
 
 
This guide assumes no previous knowledge of scripting or programming, but progresses rapidly toward an intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and lore. It serves as a textbook, a manual for self-study, and a reference and source of knowledge on shell scripting techniques. 
 

Compactaciones en Apache Cassandra


Como dijimos anteriormente SSTables son inmutables, esto ayuda a cassandra en ser más rápida en la escritura. Por ejemplo ante una modificación, cassandra no necesita buscar el registro a modificar, solo escribe una nueva fila. El proceso de compactación permite mejorar las lecturas y ahorrar en disco dado que mergea los SSTables. Es decir en el proceso de compactación los datos y las claves son mergeados, las columnas son combinadas, se eliminan las marcas de tombstones y un nuevo indice es creado.

La compactación es el proceso que libera espacio en le disco mergeando los archivos de datos que se fueron acumulando. Esto es aproximadamente análogo a la reconstrucción de una tabla en el mundo relacional. Pero la principal diferencia en Cassandra es que está pensada como una operación transparente que se realiza a lo largo de la vida del servidor.

En la compactación, los datos combinados se ordenan, se crea un nuevo índice sobre los datos ordenados, y los datos recién fusionados, ordenados e indexados se escriben en un único SSTable nuevo (cada SSTable consta de varios archivos, incluidos: Datos, Índice y Filtros).
Este proceso es administrado por la clase org.apache.cassandra.db.compaction.CompactionManager.

Otra función importante de la compactación es mejorar el rendimiento al reducir el número de búsquedas requeridas. Hay un número limitado de SSTables para inspeccionar y encontrar los datos de la columna para una clave dada. Si una clave se muta frecuentemente, es muy probable que todas las mutaciones terminen en SSTables vacios. Compactarlos evita que la base de datos tenga que realizar una búsqueda para extraer los datos de cada SSTable a fin de ubicar el valor actual de cada columna solicitada en una lectura.

Cuando se realiza la compactación, hay un pico temporal en la I/O del disco y el tamaño de los datos en el disco mientras se leen los SSTables antiguos y se están escribiendo nuevos SSTables.

Cassandra soporta diferentes algoritmos de compactaciones y cada estrategía de compactación esta relacionada con un algoritmo, es decir utiliza el patron Strategy para implementar diferentes modos de compactar. La clase padre de las estrategías es AbstractCompactionStrategy. Y se tienen las siguientes estrategias disponibles:

  • SizeTieredCompactionStrategy (STCS) es la estrategia de compactación predeterminada y se recomienda para tablas de escritura intensiva
  • LeveledCompactionStrategy (LCS) se recomienda para tablas de lectura intensiva
  • DateTieredCompactionStrategy (DTCS), que está destinado a series de tiempo o datos basados en la fecha.


Una característica interesante de la compactación se relaciona con su intersección con la reparación incremental. Una característica llamada anticompactación se añadió en la versión 2.1. Como su nombre lo indica, la anti-compactación es en cierto modo una operación opuesta a la compactación regular, ya que el resultado es la división de un SSTable en dos SSTables, uno que contiene datos reparados y el otro que contiene datos sin reparar. La compensación es que se introduce una mayor complejidad en las estrategias de compactación, que deben manejar los SSTables reparados y no reparados por separado para que no se fusionen entre sí.

sábado, 4 de mayo de 2019

Filtros Bloom en Apache Cassandra

Los filtros Bloom se utilizan para mejorar el rendimiento de las lecturas. Su nombre es por su inventor, Burton Bloom. Los filtros Bloom son algoritmos muy rápidos y no deterministas para comprobar si un elemento es miembro de un conjunto. No son deterministas porque es posible obtener una lectura de falsos positivos de un filtro Bloom, pero no un falso negativo.

Los filtros Bloom funcionan al mapear los valores de un conjunto de datos en una matriz de bits y condensar un conjunto de datos más grande en una cadena de resumen mediante una función hash. El compendio, por definición, utiliza una cantidad de memoria mucho menor que la de los datos originales. Los filtros se almacenan en la memoria y se utilizan para mejorar el rendimiento al reducir la necesidad de acceso al disco en las búsquedas de claves. El acceso al disco suele ser mucho más lento que el acceso a la memoria. Entonces, en cierto modo, un filtro Bloom es un tipo especial de caché. Cuando se realiza una consulta, el filtro Bloom comprueba primero antes de acceder al disco.

Debido a que los falsos negativos no son posibles, si el filtro indica que el elemento no existe en el conjunto, ciertamente no lo hace; pero si el filtro piensa que el elemento está en el conjunto, se accede al disco para asegurarse.

Los filtros Bloom son implementados por la clase org.apache.cassandra.utils.BloomFilter. Cassandra proporciona la capacidad de aumentar la precisión del filtro Bloom (reduciendo el número de falsos positivos) al aumentar el tamaño del filtro, a costa de más memoria. Esta posibilidad positiva falsa es ajustable por tabla.

Los filtros Bloom se utilizan en otras bases de datos distribuidas y tecnologías de almacenamiento en caché, como Apache Hadoop, Google Bigtable y Squid Proxy Cache.

miércoles, 1 de mayo de 2019

C# y F# para Apache Spark


Microsoft anunció el lanzamiento de .NET para Apache Spark.

Microsoft anunció la versión preliminar de .NET para Apache Spark. Apache Spark está escrito en Scala, por lo que siempre ha tenido soporte nativo para este lenguaje. También ha tenido durante mucho tiempo enlaces API para Java, así como los populares lenguajes de ciencia de datos Python y R. Los nuevos enlaces de lenguaje para C# y F# están escritos en una nueva capa de interoperabilidad Spark. En las pruebas en el punto de referencia TPC-H, el rendimiento de .NET fue comparable a otros lenguajes, y en algunos casos fue "2 veces más rápido que Python".

Los desarrolladores pueden reutilizar el código y las librerías compatibles con .NET estándar y "pueden acceder a todos los aspectos de Apache Spark, incluidos Spark SQL, DataFrames, Streaming, MLLib". Los desarrolladores de la nube pueden implementar .NET para Apache Spark en Azure de Microsoft usando Azure HDInsight y Azure Databricks, o en Amazon Web Services usando Amazon EMR Spark y AWS Databricks.

La ejecución de aplicaciones .NET en Spark requiere la instalación de los binarios de Microsoft.Spark.Worker, así como un JDK y los binarios estándar de Apache Spark. El desarrollo de una aplicación requiere la instalación del paquete nuget Microsoft.Spark. Los desarrolladores de Microsoft han enviado Propuestas de mejora de proyectos Spark (SPIP) para incluir la extensión de lenguaje C# y una capa de interoperabilidad genérica en Spark. Sin embargo, Sean Owen, un comentarista de Apache Spark, comentó que sería "altamente improbable" que el trabajo se fusionara con Spark.

La hoja de ruta de .NET para Apache Spark enumera varias mejoras al proyecto que ya está en marcha, incluida la compatibilidad con Apache Spark 3.0, la compatibilidad con la vectorización de .NET Core 3.0 y la compatibilidad con VS Code. .NET para el código fuente de Apache Spark está disponible en Github.

Libros gratis de Java Geeks.

Download IT Guides!

 
JMeter is an application that offers several possibilities to configure and execute load, performance and stress tests using different technologies and protocols. It allows simulating different type of requests against all kind of databases, FTP, HTTP, HTTPS or other kind of servers. Originally JMeter was designed to test web applications, but its functionality has expanded and nowadays allows testing against almost any kind of program and can be used to perform functional tests in your applications..
 
 
Docker is the world's leading software containerization platform. Docker containers wrap a piece of software in a complete filesystem that contains everything needed to run: code, runtime, system tools, system libraries anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment. Docker provides an additional layer of abstraction and automation of operating-system-level virtualization on Linux.
 
 
A design pattern is a general reusable solution to a commonly occurring problem within a given context in software design. A design pattern is not a finished design that can be transformed directly into source or machine code. It is a description or template for how to solve a problem that can be used in many different situations. Patterns are formalized best practices that the programmer can use to solve common problems when designing an application or system.
 
 
Elasticsearch is a search engine based on Lucene. It provides a distributed, multitenant capable full-text search engine with an HTTP web interface and schema-free JSON documents. Elasticsearch is developed in Java and is released as open source under the terms of the Apache License. Elasticsearch is the most popular enterprise search engine followed by Apache Solr, also based on Lucene.
 

Tombstones en Cassandra


En el mundo relacional, podría estar acostumbrado a la idea de una "eliminación suave o eliminación logica". En lugar de ejecutar realmente una instrucción de eliminación de SQL, la aplicación emitirá una instrucción de actualización que cambia un valor en una columna llamada "eliminado", a veces se hace esto por auditoría o mantener registros historico.

Este es un concepto similar en Cassandra llamado Tombstones (que no se como traducirlo). Así es como funcionan todas las eliminaciones. Cuando ejecuta una operación de eliminación, los datos no se eliminan inmediatamente. En su lugar, se trata como una operación de actualización que coloca una marca de eliminado.Tombstones es un marcador de eliminación que se requiere para suprimir datos antiguos en SSTables hasta que se pueda ejecutar la compactación.

Hay una configuración relacionada llamada Garbage Collection Grace Seconds. Esta es la cantidad de tiempo que el servidor esperará para recolectar un registro marcado como eliminado. De forma predeterminada, se establece en 864,000 segundos, el equivalente a 10 días. Cassandra hace un seguimiento del tiempo de marcado, y una vez que esta es más antigua que GCGraceSeconds, será recogida por el recolector de basura. El propósito de este retraso es dar a un nodo que no esté disponible el tiempo de recuperación; Si un nodo está inactivo por más tiempo que este valor, entonces se trata como fallido y reemplazado.


domingo, 28 de abril de 2019

Transacciones Ligeras y Paxos en Cassandra


Cassandra proporciona una consistencia ajustable, que incluye la capacidad de lograr una consistencia fuerte al especificar niveles de consistencia suficientemente altos.

Sin embargo, una consistencia sólida no es suficiente para evitar las condiciones de competencia en los casos en que los clientes necesitan leer y luego escribir datos.

Vamos explicar esto con un ejemplo, supongamos que tenemos una tabla Cliente. Imagine que estamos creando un cliente y que desea administrar los registros de usuarios como parte de una aplicación de administración de cuentas. Al crear una nueva cuenta de usuario, nos gustaría
asegúrarnos de que el registro de usuario no exista, para no sobrescribir involuntariamente los datos de usuario existentes. Así que hacemos una lectura para ver si el registro existe primero, y luego solo realizamos la creación si el registro no existe. El comportamiento que buscamos se denomina consistencia linealizable, lo que significa que nos gustaría garantizar que ningún otro cliente pueda interponerse entre nuestras consultas de lectura y escritura con su propia modificación. Desde la versión 2.0, Cassandra admite un mecanismo de transacción ligero (o "LWT") que proporciona una consistencia linealizable.

La implementación de LWT de Cassandra se basa en Paxos. Paxos es un algoritmo de consenso que permite que los nodos pares distribuidos se pongan de acuerdo sobre una propuesta, sin necesidad de un maestro para coordinar una transacción. Paxos y otros algoritmos de consenso surgieron como alternativas a los enfoques tradicionales basados ​​en el compromiso de dos fases para las transacciones distribuidas.

El algoritmo básico de Paxos consta de dos etapas: preparar / prometer y proponer / aceptar. Para modificar los datos, un nodo coordinador puede proponer un nuevo valor a los nodos de réplica, asumiendo el rol de líder. Otros nodos pueden actuar como líderes simultáneamente para otras modificaciones. Cada nodo de réplica verifica la propuesta, y si la propuesta es la última que ha visto, promete no aceptar las propuestas asociadas con las propuestas anteriores. Cada nodo de réplica también devuelve la última propuesta que recibió que aún está en progreso. Si la propuesta es aprobada por la mayoría de las réplicas, el líder confirma la propuesta, pero con la advertencia de que primero debe cometer cualquier propuesta en curso que haya precedido a su propia propuesta.

La implementación de Cassandra amplía el algoritmo básico de Paxos para admitir la semántica de lectura antes de escritura deseada (también conocida como "comprobar y establecer"), y permitir que el estado se reinicie entre transacciones. Lo hace insertando dos fases adicionales en el algoritmo, para que funcione de la siguiente manera:


  • Preparar / prometer
  • Leer / Resultados
  • Proponer / Aceptar
  • Cometer / Ack


Por lo tanto, una transacción exitosa requiere cuatro viajes de ida y vuelta entre el nodo coordinador y las réplicas. Esto es más costoso que una escritura regular, por lo que debe pensar detenidamente sobre su caso de uso antes de usar LWT.

Las transacciones ligeras de Cassandra están limitadas a una sola partición. Internamente, Cassandra almacena un estado Paxos para cada partición. Esto asegura que las transacciones en diferentes particiones no puedan interferir entre sí.

Puede encontrar la implementación de Cassandra del algoritmo Paxos en el paquete org.apache.cassandra.service.paxos.

viernes, 26 de abril de 2019

Llego Ubuntu 19.04 Disco Dingo


Nueva versión de Ubuntu y que trae de nuevo viejo ...

Yaru, el tema por defecto introducido en Ubuntu 18.10 no soportaba iconos para varias aplicaciones de terceros. Los iconos regulares de estas aplicaciones no armonizaban demasiado bien con los de las instaladas. Ese problema estético fue corregido. También se modificaron los iconos del centro de software, la papelera y el panel de configuración. El fondo de escritorio, como sucede a cada nueva versión, corresponde a la mascota.

Viene con  3.22 de GNOME pero Ubuntu no adopta todas las características completas de la versión.  Podemos seguir teniendo iconos en el escritorio y el panel lateral está presente en forma permanente. Por el contrario, no se incluyeron las (muy necesarias) mejoras en el centro de software ni los controles para activar fractional scalling en HiDPl.

La gran novedad de esta versión, es el soporte para las tarjetas gráficas AMD de gama alta,  mejoras en el rendimiento de la CPU y soporte para más hardware todo gracias a Núcleo Linux 5.0

Dejo link: http://releases.ubuntu.com/19.04/

miércoles, 24 de abril de 2019

Libros a Java geeks

Download Testing eBooks!

 
 
In this digital era, organizations are forced to trade off between faster time to market and flawless user experience. In this eBook, we will discuss:

- How AI is impacting software testing
- The current challenges with test automation
- How AI can help solve these challenges
- How testers and developers can embrace AI
- The future of test automation
 
 
 
Manual testing is a thing of the past. It's time to integrate automation into your DevOps process. So how do you keep up? With continuous integration and continuous delivery.

This guide will dive into the real cost of quality and the effect that CI and CD can have on your DevOps efficiency. It will cover the essentials for maintaining proper test coverage, how to define good coverage and how often you should be running tests. Ready to cut costs and improve the agility of your applications?
 
 
 
The right automated testing tools support the software delivery process in an iterative manner and allow developers to ship high quality code and create exceptional user experiences.

- How to identify your specific needs and challenges relative to the situations you're facing.
- What to look for in a vendor
- What "hidden fees" to consider beyond the license fee
- How to determine the features you need with the help of the included feature-comparison table
- How to prepare for launch once you've selected your solution