Translate

martes, 19 de febrero de 2019

AdoptOpenJDK


El código de Java es de código abierto y está disponible en la OpenJDK. AdoptOpenJDK proporciona binarios OpenJDK creados previamente a partir de un conjunto de código totalmente abierto de scripts de compilación e infraestructura.
Con AdoptOpenJDK podemos obtener imágenes de Docker en Docker Hub, con la open que necesitemos. A la vez podemos obtener las últimas versiones. Y se pueden obtener Nightly builds.

Las plataformas que son soportadas son:


Linux x64 logo

Linux x64

jdk8u202-b08
Windows x32 logo

Windows x32

jdk8u202-b08
Windows x64 logo

Windows x64

jdk8u202-b08
macOS x64 logo

macOS x64

jdk8u202-b08
Linux s390x logo

Linux s390x

jdk8u202-b08
Linux ppc64le logo

Linux ppc64le

jdk8u202-b08
Linux aarch64 logo

Linux aarch64

jdk8u191-b12
Solaris sparcv9 logo

Solaris sparcv9

jdk8u202-b08
AIX ppc64 logo

AIX ppc64

jdk8u202-b08
Docker logo

Docker

Official Image

Dejo link: https://adoptopenjdk.net/releases.html




lunes, 18 de febrero de 2019

Apache ZooKeeper


Ya hablamos de Apache ZooKeeper varias veces, pero de costado. Es decir hablando de otros productos relacionados con el mundo hadoop, y a la vez hablamos de él. Y por que tantas veces tuvimos que hablar de este producto? porque este producto, como lo indica su nombre, se encarga de cuidar las bestias que son todos los productos hadoop.

ZooKeeper tiene integración con todos los productos, dado que es es encargado de monitoriar su trabajo. ZooKeeper es un servicio centralizado para mantener la información de configuración, asignar nombres, proporcionar sincronización distribuida y proporcionar servicios de grupo. Todos estos tipos de servicios son utilizados de una forma u otra por las aplicaciones distribuidas. Cada vez que se implementan, hay un montón de trabajo que consiste en solucionar estos problemas. Debido a la dificultad de implementar este tipo de servicios, al principio las aplicaciones generalmente los escatiman, lo que los hace frágiles este tipo de aplicaciones frente al cambio y difíciles de administrar. Incluso cuando se realizan correctamente, las diferentes implementaciones de estos servicios conducen a la complejidad de la administración cuando se implementan las aplicaciones.

ZooKeeper apunta a destilar la esencia de estos diferentes servicios en una interfaz muy simple a un servicio de coordinación centralizado. El servicio en sí es distribuido y altamente confiable. El servicio implementará los protocolos de consenso, administración de grupos y presencia para que las aplicaciones no tengan que implementarlas por su cuenta. Los usos específicos de la aplicación consistirán en una mezcla de componentes específicos de ZooKeeper y las convenciones específicas de la aplicación. ZooKeeper Recipes muestra cómo este simple servicio se puede usar para construir abstracciones mucho más poderosas.

Espero que este post les abra el apetito del conocimiento dado que vamos a analizar más este producto. Dejo link: https://zookeeper.apache.org/

Spark y HBase

Tuve que conectar una aplicación spark con hbase con scala y sbt y scalatra... etc...

primero vamos a ver a build.sbt : 

val ScalatraVersion = "2.6.3"

organization := "com.hexacta"

name := "Sparklatra"

version := "0.1.0-SNAPSHOT"

scalaVersion := "2.11.8"

resolvers += Classpaths.typesafeReleases
resolvers += "Cloudera Repository" at "https://repository.cloudera.com/content/repositories/releases/"
resolvers += "Cloudera Repository2" at "https://repository.cloudera.com/artifactory/cloudera-repos/"

libraryDependencies ++= Seq(
  "org.scalatra" %% "scalatra" % ScalatraVersion  ,
  "org.scalatra" %% "scalatra-scalatest" % ScalatraVersion % "test" ,
  "ch.qos.logback" % "logback-classic" % "1.2.3" % "runtime" ,
  "org.eclipse.jetty" % "jetty-webapp" % "9.4.9.v20180320" % "container" ,
  "javax.servlet" % "javax.servlet-api" % "3.1.0" % "provided"  ,
  "com.sun.jersey" % "jersey-core" % "1.19.4" ,
  "com.sun.jersey" % "jersey-server" % "1.19.4" ,
  "org.apache.spark" % "spark-core_2.11" % "2.3.1",
  "org.apache.spark" %% "spark-sql" % "2.3.1",
  "org.apache.spark" %% "spark-streaming" % "2.3.1" ,
  "org.apache.hbase" % "hbase-spark" % "2.1.0-cdh6.1.1" intransitive() ,
  "org.apache.hbase" % "hbase-server" % "2.1.0-cdh6.1.1"  intransitive() ,
  "org.apache.hbase" % "hbase-mapreduce" % "2.1.0-cdh6.1.1" intransitive() ,
  "org.apache.hbase" % "hbase-common" % "2.1.0" exclude("com.fasterxml.jackson.core", "jackson-databind"),
  "org.apache.hbase" % "hbase-client" % "2.1.0" exclude("com.fasterxml.jackson.core", "jackson-databind")
)

enablePlugins(SbtTwirl)
enablePlugins(ScalatraPlugin)

Ahora vamos hacer un ejemplito, de un metodo get que insertar y consultar : 

   get(s"/testSparkHbase/:key/:value") {
    val conf : Configuration = HBaseContext.getConf()
    // cree la tabla
    // create 'TableTest', 'info'
    // put 'TableTest', 'rowkey1', 'info:test', 'ejemplo'
    val connection = ConnectionFactory.createConnection(conf)

    val hbaseContext = new org.apache.hadoop.hbase.spark.HBaseContext(SparkContext.getSc, conf)

    val tableName = "TableTest"
    val columnFamily = "info"

    val rdd = SparkContext.getSc.parallelize(Array(
      (Bytes.toBytes(params("key")),
        Array((Bytes.toBytes(columnFamily), Bytes.toBytes("test"), Bytes.toBytes(params("value")))))))

    hbaseContext.bulkPut[(Array[Byte], Array[(Array[Byte], Array[Byte], Array[Byte])])](rdd,
      TableName.valueOf(tableName),
      (putRecord) => {
        val put = new Put(putRecord._1)
        putRecord._2.foreach((putValue) =>
          put.addColumn(putValue._1, putValue._2, putValue._3))
        put
      });

    Ok("ok")
  }

  get(s"/testSparkHbase/:key") {

    val conf : Configuration = HBaseContext.getConf()
    // cree la tabla
    // create 'TableTest', 'info'
    // put 'TableTest', 'rowkey1', 'info:test', 'ejemplo'
    val connection = ConnectionFactory.createConnection(conf)

    val hbaseContext = new org.apache.hadoop.hbase.spark.HBaseContext(SparkContext.getSc, conf)

    val tableName = "TableTest"
    val columnFamily = "info"

    val rdd = SparkContext.getSc.parallelize(Array(Bytes.toBytes(params("key"))))

    val getRdd = rdd.hbaseBulkGet[String](hbaseContext, TableName.valueOf(tableName), 2,
      record => {
        System.out.println("making Get"+ record.toString)
        new Get(record)
      },
      (result: Result) => {

        val it = result.listCells().iterator()
        val b = new StringBuilder

        b.append(Bytes.toString(result.getRow) + ":")

        while (it.hasNext) {
          val cell = it.next()
          val q = Bytes.toString(CellUtil.cloneQualifier(cell))
          if (q.equals("counter")) {
            b.append("(" + q + "," + Bytes.toLong(CellUtil.cloneValue(cell)) + ")")
          } else {
            b.append("(" + q + "," + Bytes.toString(CellUtil.cloneValue(cell)) + ")")
          }
        }
        b.toString()
      })

    getRdd.collect().foreach(v => println(v))

    var result = ListBuffer[String]()

    getRdd.collect().foreach(v => result += v)

    Ok(compact(render(result)))
  }

  }



martes, 12 de febrero de 2019

Download Minibooks!

 
A design pattern is a general reusable solution to a commonly occurring problem within a given context in software design. A design pattern is not a finished design that can be transformed directly into source or machine code. It is a description or template for how to solve a problem that can be used in many different situations. Patterns are formalized best practices that the programmer can use to solve common problems when designing an application or system. In this book you will delve into a vast number of Design Patterns and see how those are implemented and utilized in Java. You will understand the reasons why patterns are so important and learn when and how to apply each one of them.
 
 
Concurrency is always a challenge for developers and writing concurrent programs can be extremely hard. There is a number of things that could potentially blow up and the complexity of systems rises considerably when concurrency is introduced. However, the ability to write robust concurrent programs is a great tool in a developer’s belt and can help build sophisticated, enterprise level applications. In this course, you will dive into the magic of concurrency. You will be introduced to the fundamentals of concurrency and concurrent code and you will learn about concepts like atomicity, synchronization and thread safety. As you advance, the following lessons will deal with the tools you can leverage, such as the Fork/Join framework, the java.util.concurrent JDK package. 

lunes, 11 de febrero de 2019

HackerRank Developer Skills Report

Quiero compartir esta encuesta hecha por hackerrank, lo que más me llamo la atención es que el lenguaje que esperan aprender este 2019 es Go, kotlin, python, etc...


Sin más que agregar, dejo link: https://research.hackerrank.com/developer-skills/2019

miércoles, 6 de febrero de 2019

Libros de Java Code Geeks

Download Dev Guides!

 
Bootstrap is a free and open-source collection of tools for creating websites and web applications. It contains HTML and CSS based design templates for typography, forms, buttons, navigation and other interface components, as well as optional JavaScript extensions. It aims to ease the development of dynamic websites and web applications. Bootstrap is a front end framework, that is, an interface for the user, unlike the server-side code which resides on the “back end” or server. Bootstrap is the most-starred project on GitHub, with over 88K stars and more than 37K forks. In this ebook, we provide a compilation of Bootstrap based examples that will help you kick-start your own web projects. 
 
 
Have you wondered what are the most common Javascript questions developers are asked in interviews? Well, in this minibook we’re going to go through some of the most anticipated questions (and their answers) to help you get going in job interviews and make a good impression with your knowledge.JavaScript developers are in high demand in the IT world. If this is the role that best expresses your knowledge and professionalism, you have a lot of opportunities to change the company you work for and increase your salary. But before you are hired by a company, you have to demonstrate your skills in order to pass the interview process.
 
 
Hibernate ORM (Hibernate in short) is an object-relational mapping framework, facilitating the conversion of an object-oriented domain model to a traditional relational database. Hibernate solves the object-relational impedance mismatch problems by replacing direct persistence-related database accesses with high-level object handling functions. Hibernate is one of the most popular Java frameworks out there. For this reason we have provided an abundance of tutorials here at Java Code Geeks, most of which can be found here. Now, we wanted to create a standalone, reference post to provide a framework on how to work with Hibernate and help you quickly kick-start your Hibernate applications. Enjoy!
 
 
Google Web Toolkit, or GWT Web Toolkit, is an open source set of tools that allows web developers to create and maintain complex JavaScript front-end applications in Java. Other than a few native libraries, everything is Java source that can be built on any supported platform with the included GWT Ant build files. It is licensed under the Apache License version 2.0. GWT emphasizes reusable approaches to common web development tasks, namely asynchronous remote procedure calls, history management, bookmarking, UI abstraction, internationalization, and cross-browser portability. In this ebook, we provide a compilation of GWT examples that will help you kick-start your own projects. 
 

Istio, control operativo sobre la malla de servicio



Las plataformas en la nube proporcionan una gran cantidad de beneficios para las organizaciones que los utilizan. Sin embargo, no se puede negar que la adopción de la nube puede poner tensiones en los equipos de DevOps. Los desarrolladores deben utilizar los microservicios para crear arquitecturas, mientras que los operadores están administrando implementaciones híbridas y de múltiples nubes extremadamente grandes. Istio le permite conectarse, asegurar, controlar y observar servicios.

A un alto nivel, Istio ayuda a reducir la complejidad de estas implementaciones y alivia la presión sobre los equipos de desarrollo. Es una malla de servicio de código completamente abierto que se distribuye de manera transparente en las aplicaciones distribuidas existentes. También es una plataforma, incluidas las API que le permiten integrarse en cualquier plataforma de registro, telemetría o sistema de políticas. El conjunto diverso de funciones de Istio le permite ejecutar una arquitectura de microservicio distribuida de manera exitosa y eficiente, y proporciona una manera uniforme de proteger, conectar y monitorear los microservicios.

Istio aborda los desafíos a los que se enfrentan los desarrolladores y operadores a medida que las aplicaciones monolíticas pasan a una arquitectura de microservicio distribuido.

El término malla de servicio se utiliza para describir la red de microservicios que conforman dichas aplicaciones y las interacciones entre ellas. A medida que la malla de servicios crece en tamaño y complejidad, puede ser más difícil de entender y administrar. Sus requisitos pueden incluir descubrimiento, equilibrio de carga, recuperación de fallas, métricas y monitoreo. Una malla de servicios a menudo también tiene requisitos operativos más complejos, como limitación de velocidad, control de acceso y autenticación de extremo a extremo.

Istio proporciona perspectivas de comportamiento y control operativo sobre la malla de servicios en su conjunto, ofreciendo una solución completa para satisfacer los diversos requisitos de las aplicaciones de microservicio.


Dejo link: https://github.com/istio/

domingo, 3 de febrero de 2019

Kubeflow


Kubeflow es una plataforma de código abierto nativa de Kubernetes para desarrollar, organizar, implementar y ejecutar cargas de trabajo de aprendizaje automático escalables y portátiles.

La construcción y capacitación de modelos son solo una pequeña parte de los flujos de trabajo de aprendizaje automático (ML). Otras cosas que debe abordar incluyen la transformación de datos a un formato determinado y la ubicación accesible de dichos datos; limpieza de datos e ingeniería de características; analizando tus modelos entrenados; gestión de versiones de modelos; sirviendo de manera escalable a tus modelos entrenados; y evitar el sesgo de entrenamiento. Este es particularmente el caso cuando los flujos de trabajo deben ser portátiles, repetibles y tienen muchas partes móviles que deben integrarse.

Además, la mayoría de estas actividades se repiten en múltiples flujos de trabajo, quizás solo con diferentes parametrizaciones. A menudo, está ejecutando un conjunto de experimentos que deben realizarse de manera auditable y repetible. A veces, parte o la totalidad de un flujo de trabajo de ML debe ejecutarse en las instalaciones, pero en otros contextos puede ser más productivo usar servicios en la nube administrados, lo que facilita la distribución y la ampliación de los pasos del flujo de trabajo y la ejecución de varios experimentos en paralelo. También tienden a ser más económicos para cargas de trabajo "reventadas".

La construcción de cualquier sistema ML listo para la producción involucra varios componentes, a menudo mezclando proveedores. Conectar y administrar estos servicios para configuraciones incluso moderadamente sofisticadas puede introducir barreras de complejidad. A menudo, las implementaciones están tan vinculadas a los clústeres que se han implementado que estas pilas están inmóviles, lo que significa que mover un modelo de una computadora portátil a un clúster de nube altamente escalable, o de un entorno de experimentación a un contexto listo para la producción, es efectivamente imposible Sin re-arquitectura significativa. Todas estas diferencias se suman a un esfuerzo inútil y crean oportunidades para introducir errores en cada transición.

Kubeflow ayuda a abordar estas preocupaciones. Es una plataforma de código abierto nativa de Kubernetes para desarrollar, organizar, implementar y ejecutar cargas de trabajo ML escalables y portátiles. Ayuda a la reproducibilidad y la colaboración en los ciclos de vida del flujo de trabajo de ML, lo que le permite administrar la orquestación de punto a punto de las tuberías de ML, para ejecutar su flujo de trabajo en entornos híbridos o múltiples (como el intercambio entre los bloques de construcción locales y de la nube, según el contexto). ), y para ayudarlo a reutilizar bloques de construcción en diferentes flujos de trabajo. Kubeflow también proporciona soporte para visualización y colaboración en su flujo de trabajo ML.

Kubeflow Pipelines es un componente recientemente agregado de Kubeflow que puede ayudarnos a componer, implementar y administrar flujos de trabajo ML, de manera opcional, híbridos de extremo a extremo. Debido a que Pipelines es parte de Kubeflow, no hay bloqueo en la transición desde la creación de prototipos a la producción. Kubeflow Pipelines admite la experimentación rápida y confiable, con una interfaz que facilita el desarrollo en un portátil Jupyter, por lo que puede probar muchas técnicas de ML para identificar qué funciona mejor para su aplicación.

Hay muchas ventajas al construir una pila de ML sobre Kubernetes. No es necesario volver a implementar los fundamentos que se requerirían para dicho grupo, como el soporte para la replicación, las revisiones de estado y la supervisión. Kubernetes admite la capacidad de generar especificaciones declarativas sólidas y crear definiciones de recursos personalizadas adaptadas para ML. Por ejemplo, TFJob de Kubeflow es un recurso personalizado que facilita la ejecución de trabajos de capacitación distribuidos de TensorFlow en Kubernetes.

Kubernetes ofrece la escalabilidad, la portabilidad y la reproducibilidad requeridas para el soporte de flujos y experimentos de ML consistentemente ejecutados. Ayuda a crear y componer pasos de flujo de trabajo reutilizables y bloques de construcción de ML y facilita la ejecución de los mismos flujos de trabajo en diferentes clústeres a medida que pasan del prototipo a la producción o se mueven de un clúster local a la nube.

Dejo link:
https://github.com/kubeflow/kubeflow
https://www.kubeflow.org/

miércoles, 30 de enero de 2019

Eclipse GlassFish fue liberado!!


Eclipse Glassfish fue liberado!!

Según lo que tengo entendido es el primer release desde que Glassfish es de la organización Eclipse. Si bien se encuentra en incubadora, es un contenedor JEE muy confiable y estable, dado sus años de desarrollo, prueba y uso.

Espero que tome fuerza y crezca en popularidad como se lo merece.

Sin más, dejo link : https://projects.eclipse.org/projects/ee4j.glassfish/downloads?utm_content=83778533&utm_medium=social&utm_source=facebook&hss_channel=fbp-259655700571

Probando Linux deepin 15.9

Probe linux deepin y es una muy buena opción, muy elegante y facil de usar. Para los que no la conocen Deepin es una distribución de Linux basada en la arquitectura de Debian. 

Está enfocado en "proveer un sistema operativo elegante, amigable con el usuario, estable y seguro".​ El desarrollo de Deepin es liderado por la compañía China Wuhan Deepin Technology Co., Ltd., que genera ingresos mediante la venta de soporte técnico y otros servicios relacionados con Deepin.​

La verdad me sorprendió, muy intuitivo y con aplicaciones propias que la rompen. 

Sin más dejo link: https://www.deepin.org/es/

y screenshots: 












domingo, 27 de enero de 2019

AWS lanza una nueva base de datos orientada a documentos compatible con MongoDB


AWS acaba de lanzar un servicio de base de datos, denominado Amazon DocumentDB, que almacena datos semiestructurados dentro de un servicio administrado escalable y de alta disponibilidad. Mientras ofrece una API compatible con MongoDB, DocumentDB no ejecuta software de MongoDB, pero ofrece una API para compatibilidad.

Amazon posicionó DocumentDB como un reemplazo directo que está "diseñado para ser compatible con sus aplicaciones y herramientas MongoDB existentes". AWS afirma que DocumentDB ofrece la escalabilidad, disponibilidad y rendimiento necesarios para las cargas de trabajo MongoDB de grado de producción. DocumentDB ofrece hasta 64 TB de almacenamiento que crece automáticamente (en comparación con la asignación previa) junto con su uso. Los clientes también tienen una opción de tamaños de "instancia" que se pueden ampliar hasta 488 GiB de memoria. Para disponibilidad, DocumentDB replica datos 6x en tres zonas de disponibilidad. También permite a los usuarios crear hasta quince réplicas de lectura. Y para el rendimiento, DocumentDB se ejecuta en el almacenamiento SSD y está diseñado para operaciones de lectura de baja latencia. DocumentDB incluye una serie de capacidades de gestión de bases de datos integradas.

Algunos especulan que DocumentDB se basa en AWS Aurora PostgreSQL, pero está claro que NO está ejecutando el software MongoDB. MongoDB, Inc. es una de las pocas compañías que recientemente han cambiado su licencia para disuadir a los proveedores de la nube de ofrecer partes de su software de código abierto como un servicio.

Dejo links:
https://aws.amazon.com/blogs/aws/new-amazon-documentdb-with-mongodb-compatibility-fast-scalable-and-highly-available/
https://aws.amazon.com/documentdb/

sábado, 26 de enero de 2019

4 libros gratuitos de java code geeks!

Download Dev Guides!

 
jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML. jQuery is the most popular JavaScript library in use today, with installation on 65% of the top 10 million highest-trafficked sites on the Web. jQuery’s syntax is designed to make it easier to navigate a document, select DOM elements, create animations, handle events, and develop Ajax applications. jQuery also provides capabilities for developers to create plug-ins on top of the JavaScript library. This enables developers to create abstractions for low-level interaction and animation, advanced effects and high-level, theme-able widgets. The modular approach to the jQuery library allows the creation of powerful dynamic web pages and web applications. 
 
 
Node.js is an exciting software platform for building scalable server-side and networking applications. Node.js applications are written in JavaScript, and can be run within the Node.js runtime on Windows, Mac OS X and Linux with no changes. Node.js applications are designed to maximize throughput and efficiency, using non-blocking I/O and asynchronous events. Node.js applications run single-threaded, although Node.js uses multiple threads for file and network events. In this book, you will get introduced to Node.js. You will learn how to install, configure and run the server and how to load various modules. Additionally, you will build a sample application from scratch and also get your hands dirty with Node.js command line programming.
 
 
Concurrency is always a challenge for developers and writing concurrent programs can be extremely hard. There is a number of things that could potentially blow up and the complexity of systems rises considerably when concurrency is introduced. However, the ability to write robust concurrent programs is a great tool in a developer’s belt and can help build sophisticated, enterprise level applications. In this course, you will dive into the magic of concurrency. You will be introduced to the fundamentals of concurrency and concurrent code and you will learn about concepts like atomicity, synchronization and thread safety. As you advance, the following lessons will deal with the tools you can leverage, such as the Fork/Join framework, the java.util.concurrent JDK package.
 
 
IntelliJ IDEA is a Java integrated development environment (IDE) for developing computer software. It is developed by JetBrains, and is available as an Apache 2 Licensed community edition, and in a proprietary commercial edition. Both can be used for commercial development. The IDE provides for integration with build/packaging tools like grunt, bower, gradle, and SBT. It supports version control systems like GIT, Mercurial, Perforce, and SVN. Databases like Microsoft SQL Server, ORACLE, PostgreSQL, and MySQL can be accessed directly from the IDE. IntelliJ supports plugins through which one can add additional functionality to the IDE. One can download and install plugins either from IntelliJ’s plugin repository website or through IDE’s inbuilt plugin search and install feature. 

domingo, 20 de enero de 2019

Que es Gradle?

Todos debemos estar al tanto de las herramientas de construcción de proyecto. Si vienen del mundo java seguro concen Maven, si vienen de Scala sbt, si vienen javascript npm, etc...

Gradle es una herramienta de automatización de compilación de proyectos de tecnología java, es de código abierto centrado en la flexibilidad y el rendimiento. Los scripts de compilación de Gradle se escriben utilizando un DSL Groovy o Kotlin. Lea sobre las características de Gradle para aprender lo que es posible con Gradle.

Altamente personalizable: Gradle se modela de una manera que es personalizable y extensible de la manera más fundamental.

Rápido: Gradle completa las tareas rápidamente, reutilizando los resultados de ejecuciones anteriores, procesando solo las entradas que han cambiado y ejecutando tareas en paralelo.

Potente: Gradle es la herramienta de compilación oficial para Android y es compatible con muchos lenguajes y tecnologías populares.

Porque tendria que usar Gradle en vez de Maven algunas razones son: flexibilidad, rendimiento, experiencia de usuario y administración de dependencias. En cuanto a la performance


Aunque los IDE son importantes, un gran número de usuarios prefieren ejecutar operaciones de compilación a través de una interfaz de línea de comandos. Gradle proporciona un CLI moderno que tiene características de detección como "tareas de gradle", así como un mejor registro y finalización de la línea de comandos.

Finalmente, Gradle proporciona una interfaz de usuario basada en la web interactiva para depurar y optimizar construcciones: análisis de compilación. También se pueden alojar en las instalaciones para permitir a una organización recopilar el historial de compilación y hacer análisis de tendencias, comparar compilaciones para depurar o optimizar el tiempo de compilación.

Que esperas para aprender y usar Gladle?

Dejo link: https://gradle.org

jueves, 17 de enero de 2019

Propiedades y campos en Kotlin parte 2

Los campos no pueden ser declarados directamente en las clases de Kotlin. Sin embargo, cuando una
propiedad necesita un campo de respaldo, Kotlin lo proporciona automáticamente. Se puede hacer referencia a este campo de respaldo en los accesores utilizando el identificador de campo:


var counter = 0 // Nota: el inicializador asigna el campo de respaldo directamente
    valor ajustado) {
        if (valor> = 0) campo = valor
    }

El identificador de campo solo se puede utilizar en los accesores de la propiedad.

Se generará un campo de respaldo para una propiedad si utiliza la implementación predeterminada de al menos uno de los accesores, o si un descriptor de acceso personalizado lo hace referencia a través del identificador de campo.

Por ejemplo, en el siguiente caso no habrá ningún campo de respaldo:


val isEmpia: booleano
    get () = this.size == 0


Si desea hacer algo que no se ajuste a este esquema de "campo de respaldo implícito", siempre puede recurrir a una propiedad de respaldo:


private var _table: Map<String, Int>? = null
public val table: Map<String, Int>
    get() {
        if (_table == null) {
            _table = HashMap() // Type parameters are inferred
        }
        return _table ?: throw AssertionError("Set to null by another thread")
    }

En todos los aspectos, esto es lo mismo que en Java, ya que el acceso a las propiedades privadas con captadores y configuradores predeterminados está optimizado para que no se introduzca la sobrecarga de llamadas a funciones.

Las propiedades cuyo valor se conoce en tiempo de compilación se pueden marcar como constantes de tiempo de compilación utilizando el modificador const. Tales propiedades deben cumplir los siguientes requisitos:


  • Nivel superior, o miembro de una declaración de objeto o un objeto complementario.
  • Inicializado con un valor de tipo String o un tipo primitivo
  • Sin adjetivo personalizado


Tales propiedades pueden ser utilizadas en anotaciones:


const val SUBSYSTEM_DEPRECATED: String = "This subsystem is deprecated"
@Deprecated(SUBSYSTEM_DEPRECATED) fun foo() { ... }


Normalmente, las propiedades declaradas con un tipo no nulo deben inicializarse en el constructor. Sin embargo, bastante a menudo esto no es conveniente. Por ejemplo, las propiedades pueden inicializarse a través de la inyección de dependencia, o en el método de configuración de una prueba de unidad. En este caso, no puede proporcionar un inicializador que no sea nulo en el constructor, pero aún así desea evitar las comprobaciones nulas al hacer referencia a la propiedad dentro del cuerpo de una clase.

Para manejar este caso, puede marcar la propiedad con el modificador lateinit:


public class MyTest {
    lateinit var subject: TestSubject

    @SetUp fun setup() {
        subject = TestSubject()
    }

    @Test fun test() {
        subject.method()  // dereference directly
    }
}

El modificador se puede usar en las propiedades var declaradas dentro del cuerpo de una clase (no en el constructor principal, y solo cuando la propiedad no tiene un captador o definidor personalizado) y, desde Kotlin 1.2, para propiedades de nivel superior y variables locales . El tipo de propiedad o variable no debe ser nulo y no debe ser un tipo primitivo.

El acceso a una propiedad de inicio tardío antes de que se haya inicializado genera una excepción especial que identifica claramente la propiedad a la que se accede y el hecho de que no se ha inicializado.


Para verificar si ya se ha inicializado una var de lateinit, use .isInitialized en la referencia a esa propiedad:

if (foo::bar.isInitialized) {
    println(foo.bar)
}

Esta verificación solo está disponible para las propiedades que son accesibles léxicamente, es decir, declaradas en el mismo tipo o en uno de los tipos externos, o en el nivel superior en el mismo archivo.